Optical and structural properties of Fe2O3-ZnO composite thick films obtained by ultrasonic spray pyrolysis
Optical and structural properties of Fe2O3-ZnO composite
PDF

Keywords

Fe2O3-ZnO composite
Ultrasonic Spray Pyrolysis
Band gap Modulation

How to Cite

Torres Frausto, C., Zapata Torres, M. G., Monsibais Silva, E., Valaguez Velázquez, E., Cruz González, N., Armando Tomás, S., & Meléndez Lira, M. (2023). Optical and structural properties of Fe2O3-ZnO composite thick films obtained by ultrasonic spray pyrolysis. Superficies Y Vacío, 36, 231101. https://doi.org/10.47566/2023_syv36_1-231101

Abstract

Fe2O3-ZnO composite gained attention due the several applications like that sensors, photocatalysis, reduction of mercury ions. Fe2O3-ZnO composite thick films were prepared by Ultrasonic Spray Pyrolysis on a glass substrate, using 0.1 M aqueous solutions of FeCl3?6H2O and ZnCl2 anhydride. To obtain different elemental concentration of Fe and Zn, we varied the volume of each aqueous solution.  The XPS analysis shown that it is possible to modulate the concentration of Zn and Fe in the samples. The X-ray diffraction measurements revealed that the films were composed of different phases corresponding with common stable iron oxides (ZnFe2O4, Fe2O3) and zinc oxide (ZnO). Results from Raman spectroscopy indicate that Fe2O3 vibrational modes are accompanied with new modes due to the presence of additional phases ZnO compounds. The band gaps were evaluated with the help of UV-visible transmittance data using the Tauc model, the results shown a modulation of the band gap values (2.2 eV to 3.2 eV). Theorical transmittance curves were obtained using the effective medium theory, using the Bruggeman model, these curves showed similar behavior that the experimental transmittance curves.

https://doi.org/10.47566/2023_syv36_1-231101
PDF

References

. S.H. Güler, Ö. Güler, E. Evin, S. Islak, Optik 127, 3187 (2016).

https://doi.org/10.1016/j.ijleo.2015.12.103

. H. Lachheb, F. Ajala, A. Hamrouni, A. Houas, F. Parrino, L. Palmisano, Catal. Sci. Technol. 7, 4041 (2017).

https://doi.org/10.1039/c7cy01085k

. R.D. Suryavanshi, K.Y. Rajpure, J. Photochem. Photobiol. A Chem. 357, 72 (2018).

https://doi.org/10.1016/j.jphotochem.2018.02.008

. J.K. Nayak, P. Roy Chaudhuri, S. Ratha, M.R. Sahoo, J. Electromagn. Waves Appl. 37, 282 (2023).

https://doi.org/10.1080/09205071.2022.2135029

. J. Sancho-Parramon, V. Janicki, J. Phys. D. Appl. Phys. 41, 215304 (2008).

https://doi.org/10.1088/0022-3727/41/21/215304

. J.Y. Lu, A. Raza, N.X. Fang, G. Chen, T. Zhang, J. Appl. Phys. 120, 163103 (2016).

https://doi.org/10.1063/1.4966119

. R.N. Abed, M. Kadhom, D.S. Ahmed, A. Hadawey, E.Yousif, Trans. Electr. Electron. Mater. 22, 317 (2021).

https://doi.org/10.1007/s42341-020-00242-8

. A. Heilmann, G. Kampfrath, V. Hopfe, J. Phys. D. Appl. Phys. 21, 986 (1988).

https://doi.org/10.1088/0022-3727/21/6/020

. C.F. Baes. R.F. Mesmer, Am. J. Sci. 281, 935 (1981). https://doi.org/ 10.2475/ajs.281.7.935

. B. Beverskog, I. Puigdomenech, Corros. Sci. 39, 107 (1997).

https://doi.org/10.1016/S0010-938X(97)89246-3

. A.K. Baev, E.A. Evsei, Russ. J. Inorg. Chem. 55, 508 (2010).

https://doi.org/10.1134/S0036023610040054

. W. Kiefer, J. Raman Spectrosc. 38, 1538 (2007).

https://doi.org/10.1002/jrs.1902

. V. D’Ippolito, G.B. Andreozzi, D. Bersani, P.P. Lottici, J. Raman Spectrosc. 46, 1255 (2015)

https://doi.org/10.1002/jrs.4764

. S. Choudhary, A. Bisht, S. Mohapatra, Ceram. Int. 47, 3833 (2021).

https://doi.org/10.1016/j.ceramint.2020.09.243

. X. Li, B. Jin, J. Huang, Q. Zhang, R. Peng, S. Chu, Solid State Sci. 80, 6 (2018).

https://doi.org/10.1016/j.solidstatesciences.2018.03.016

. J. Bai, Mater. Lett. 63, 1485 (2009).

https://doi.org/10.1016/j.matlet.2009.03.052

. R.M. Mohamed, A.A. Ismail, Sep. Purif. Technol. 266, 118360 (2021).

https://doi.org/10.1016/j.seppur.2021.118360

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Array