Amorphous TiO2-Au thin film composites synthesized by pulsed laser deposition
Time of flight curves of Ti and Au plasmas.
PDF

Keywords

pulsed laser deposition
composites
thin films
plasmas
titanium dioxide

How to Cite

Meza León, L. ., Chávez Chávez, A., & Quiñones Galván, J. (2023). Amorphous TiO2-Au thin film composites synthesized by pulsed laser deposition. Superficies Y Vacío, 36, 230902. https://doi.org/10.47566/2023_syv36_1-230902

Abstract

TiO2 has been widely studied and synthesized by various methods due to its excellent optoelectronic properties. It is possible to modify the optical properties of TiO2 by incorporating noble metal nanoparticles in order to improve its photoresponse. In this work, TiO2-Au thin film composites were grown by pulsed laser deposition technique. Ti and Au targets were simultaneously ablated in order to produce combined plasmas under a reactive atmosphere containing oxygen at a pressure of 2×10-2 Torr. The plasmas were analyzed individually by means of a planar Langmuir probe in order to calculate their mean kinetic ion energy and plasma density. Ti plasma parameters were kept constant at 196 eV and 2.06×1013 cm-3 while the Au plasma density was varied from 2.65×1012 cm-3 to 22.4×1012 cm-3. The samples were characterized by UV-Vis spectroscopy and scanning electron microscopy.  The band gap of the films was determined by means of the Tauc method, which decreased from 2.36 to 1.54 eV as the Au plasma density increased. The resultant morphology of the films shows the formation of spherical Au nanoparticles, whose average sizes increases as the Au plasma density increased, resulting in values ranging from 15 to 72 nm.

https://doi.org/10.47566/2023_syv36_1-230902
PDF

References

. D. Jiang, T.A. Otitoju, Y. Ouyang, N.F. Shoparwe, S. Wang, A. Zhang, S. Li, Catalysts 11, 1039 (2021).

https://doi.org/10.3390/catal11091039

. A. Mittal, B. Mari, S. Sharma, V. Kumari, S. Maken, K. Kumari, N. Kumar, J Mater Sci: Mater Electron. 30, 3186 (2019).

https://doi.org/10.1007/s10854-018-00651-9

. H.M. Mousa, J.F. Alenezi, I.M.A. Mohamed, A.S. Yasin, A.-F.M. Hashem, A. Abdal-hay, J. Alloys Compd. 886, 161169 (2021).

https://doi.org/10.1016/j.jallcom.2021.161169

. X. Yang, Y. Wang, L. Zhang, H. Fu, P. He, D. Han, T. Lawson, X. An, Catalysts 10, 139 (2020).

https://doi.org/10.3390/catal10010139

. X. Li, J.-L. Shi, H. Hao, X. Lang, Appl. Catal. B: Environ. 232, 260 (2018).

https://doi.org/10.1016/j.apcatb.2018.03.043

. H. Park, Y. Park, W. Kim, W. Choi, J. Photochem. Photobiol. C: Photochem. Rev. 15, 1 (2013).

https://doi.org/10.1016/j.jphotochemrev.2012.10.001

. X. Zhou, G. Liu, J. Yu, W. Fan, J. Mater. Chem. 22, 21337 (2012).

https://doi.org/10.1039/c2jm31902k

. A. Kumar, P. Choudhary, A. Kumar, P.H.C. Camargo, V. Krishnan, Small 18, 2101638 (2022).

https://doi.org/10.1002/smll.202101638

. Q. Yang, M. Hu, J. Guo, Z. Ge, J. Feng, Synthesis and enhanced photocatalytic performance of Ag/AgCl/TiO2 nanocomposites prepared by ion exchange method, J. Materiomics 4, 402 (2018).

https://doi.org/10.1016/j.jmat.2018.06.002

. J. Yu, L. Yue, S. Liu, B. Huang, X. Zhang, J. Colloid Interface Sci. 334, 58 (2009).

https://doi.org/10.1016/j.jcis.2009.03.034

. G.G. Lenzi, C.V.B. Fávero, L.M.S. Colpini, H. Bernabe, M.L. Baesso, S. Specchia, O.A.A. Santos, Desalination 270, 241 (2011).

https://doi.org/10.1016/j.desal.2010.11.051

. S.C. Chan, M.A. Barteau, Langmuir 21, 5588 (2005).

https://doi.org/10.1021/la046887k

. M.O. Abou-Helal, W.T. Seeber, Appl. Surf. Sci. 195, 53 (2002).

https://doi.org/10.1016/S0169-4332(02)00533-0

. R.S. Sonawane, M.K. Dongare, J. Mol. Catal. A: Chem. 243, 68 (2006).

https://doi.org/10.1016/j.molcata.2005.07.043

. L. Meng, Z. Wang, L. Yang, W. Ren, W. Liu, Z. Zhang, T. Yang, M.P. dos Santos, Appl. Surf. Sci. 474, 211 (2019).

https://doi.org/10.1016/j.apsusc.2018.03.043

. L. Bedikyan, S. Zakhariev, M. Zakharieva, J. Chem. Technol. Metall. 48, 555 (2013).

https://journal.uctm.edu/node/j2013-6/2-Bedikyan_p-555-558.pdf

. J. Schou, Appl. Surf. Sci. 255, 5191 (2009).

https://doi.org/10.1016/j.apsusc.2008.10.101

. S. Saracho-González, A. Pérez-Centeno, M.A. Santana-Aranda, G. Gómez-Rosas, A. Chávez-Chávez, E. Camps, L.P. Rivera, F. de Moure-Flores, O. Zelaya-Angel, J.G. Quiñones-Galván, Mater. Sci. Semicond. Process. 87, 7 (2018).

https://doi.org/10.1016/j.mssp.2018.07.004

. N.M. Bulgakova, A.V. Bulgakov, O.F. Bobrenok, Phys. Rev. E 62, 5624 (2000).

https://doi.org/10.1103/PhysRevE.62.5624

. B. Doggett, J.G. Lunney, J. Appl. Phys. 105, 033306 (2009).

https://doi.org/10.1063/1.3056131

. M. Ghidelli, L. Mascaretti, B.R. Bricchi, A. Brognara, T.A. Afifi, V. Russo, C.S. Casari, A.L. Bassi, Semicond. Sci. Technol. 35, 035016 (2020).

https://doi.org/10.1088/1361-6641/ab6cea

. V.N. Rai, A.K. Srivastava, JSM Nanotechnol. Nanomed. 4, 1039 (2016).

https://www.jscimedcentral.com/public/assets/articles/nanotechnology-4-1039.pdf

. J.G. Quiñones-Galván, D. Cardona, L.P. Rivera, G. Gómez-Rosas, A. Chávez-Chávez, Mater. Lett. 284, 129024 (2021).

https://doi.org/10.1016/j.matlet.2020.129024

. J.A. Guerrero de León, A. Pérez-Centeno, G. Gómez-Rosas, E. Camps, J.S. Arias-Cerón, M.A. Santana-Aranda, J.G. Quiñones-Galvan, Mater. Res. Express 7, 016423 (2020).

https://doi.org/10.1088/2053-1591/ab6773

. L.A. Martínez-Chávez, E.M. Rivera-Muñoz, R.R. Velázquez-Castillo, L. Escobar-Alarcón, K. Esquivel, Catalysts 11, 1406 (2021).

https://doi.org/10.3390/catal11111406

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Array