Abstract
A series of palladium catalysts (0.5, 1.5 and 3.0 wt%) were synthesized by impregnation at pore volume on a silica-based mesoporous molecular sieve (SBA-15). Materials were characterized by N2 physisorption, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (HR-TEM). The catalytic activity was evaluated in catalytic wet air oxidation (CWAO) of phenol at 160oC, 10 bar, 200 mg of catalyst and 200 mL of phenol from a 500 ppm solution. The results of the characterization show a great influence of the metallic content of Pd; the specific area decreases when introducing a higher percentage of palladium. The materials presented texture, structure and morphology according to what has been observed in literature. It was found that the size of the supported palladium oxide species formed during the calcination stage was smaller in the catalyst with lower metal content (Pd0.5/SBA-15) and this was the most active in the degradation of phenol and degraded 64% of phenol, being the most active of the catalysts.
References
. S.T. Kolaczkowski, F.J. Beltran, D.B. McLurgh, F.J. Rivas, Process Saf. Environ. Prot. 75, 257 (1997).
https://doi.org/10.1205/095758297529138
. Z.P.G. Masende, B.F.M. Kuster, K.J. Ptasinski, F.J.J.G. Janssen, J.H.Y. Katima, J.C. Schouten, Catal. Today 79–80, 357 (2003).
https://doi.org/10.1016/S0920-5861(03)00064-6
. A. Santos, P. Yustos, S. Rodriguez, F. Garcia-Ochoa, Appl. Catal. B Environ. 65, 269 (2006).
https://doi.org/10.1016/j.apcatb.2006.02.005
. A. Cybulski, Ind. Eng. Chem. Res. 46, 4007 (2007).
https://doi.org/10.1021/ie060906z
. S. Yang, X. Li, W. Zhu, J. Wang, C. Descorme, Carbon 46, 445 (2008).
https://doi.org/10.1016/j.carbon.2007.12.006
. S.K. Kim, K.H. Kim, S.K. Ihm, Chemosphere 68, 287 (2007).
https://doi.org/10.1016/j.chemosphere.2006.12.080
. A. Quintanilla, J.A. Casas, A.F. Mohedano, J.J. Rodríguez, Appl. Catal. B Environ. 67, 206 (2006).
https://doi.org/10.1016/j.apcatb.2006.05.003
. A. Fortuny, C. Miró, J. Font, A. Fabregat, Catal. Today 48, 323 (1999).
https://doi.org/10.1016/S0920-5861(98)00388-5
. K.H. Kim, J.R. Kim, S.K. Ihm, J. Hazard. Mater. 167, 1158 (2009).
https://doi.org/10.1016/j.jhazmat.2009.01.110
. H. Chen, A. Sayari, A. Adnot, F. Larachi, Appl. Catal. B Environ. 32, 195 (2001).
https://doi.org/10.1016/S0926-3373(01)00136-9
. N.G. Habtu, ”Catalytic wet air oxidation of phenol over active carbon in fixed bed reactor: steady state and periodic operation ”, PhD Dissertation (Universitat Rovira I Virgili, 2011).
https://www.tdx.cat/handle/10803/34771#page=1
. Z. Guerra-Que, H. Pérez-Vidal, G. Torres-Torres, J.C. Arévalo-Pérez, A.A. Silahua Pavón, A. Cervantes-Uribe, A. Espinosa de los Monteros, M.A. Lunagómez-Rocha, RSC Adv. 9, 8463 (2019).
https://doi.org/10.1039/C9RA00509A
. G. Almohammadi, C. O’Modhrain, S. Kelly, J.A. Sullivan, ACS Omega 5, 791 (2020).
https://doi.org/10.1021/acsomega.9b03530
. T.J. Makatsa, J. Baloyi, T. Ntho, C.M. Masuku, Crit. Rev. Environ. Sci. Technol. 51, 1891 (2021).
https://doi.org/10.1080/10643389.2020.1771886
. S. Yang, Y. Cui, Y. Sun, H. Yang, J. Hazard. Mater. 280, 55 (2014).
https://doi.org/10.1016/j.jhazmat.2014.07.051
. A. Espinoza de los Monteros, G. Lafaye, A. Cervantes, G. del Angel, J. Barbier Jr., G. Torres, Catal. Today 258, 564 (2015).
https://doi.org/10.1016/j.cattod.2015.01.009
. J. Baloyi, T. Ntho, J. Moma, J. Porous Mater. 26, 583 (2019).
https://doi.org/10.1007/s10934-018-0667-3
. M. Rubaya Rashid, F. Afroze, S. Ahmed, M.S. Miran, A. Bin, H. Susan, Mater. Today Proc. 15, 546 (2019).
https://doi.org/10.1016/j.matpr.2019.04.119
. K. Flodström, V. Alfredsson, Microporous Mesoporous Mater. 59, 167 (2003).
http://doi.org/10.1016/S1387-1811(03)00308-1
. M. Kruk, M. Jaroniec, C. Hyun Ko, R. Ryoo, Chem. Mater. 12, 1961 (2000).
https://doi.org/10.1021/cm000164e
. E. Yuan, C. Wu, G. Liu, G. Li, L. Wang, J. Ind. Eng. Chem. 66, 158 (2018).
https://doi.org/10.1016/j.jiec.2018.05.025
. D. Zhao, J. Feng Q. Huo, N. Melosh, G.H. Fredricksonet, B.F. Chmelka, G.D. Stucky, Science 279, 548 (1998).
https://doi.org/10.1126/science.279.5350.548
. M.V. Landau, L. Vradman, A. Wolfson, P.M. Rao, M. Herskowitz, Comptes Rendus Chim. 8, 679 (2005).
https://doi.org/10.1016/j.crci.2005.01.011
. H. Wang, C. jun Liu, Appl. Catal. B Environ. 106, 672 (2011).
https://doi.org/10.1016/j.apcatb.2011.06.034
. N. Arellano, M.J. Pérez Zurita, V. Sazo, C. Urbina de Navarro, C.López, Ciencia 16, 226 (2011).
https://produccioncientificaluz.org/index.php/ciencia/article/view/9856
. W. Tang, Y. Deng, Y. Chen, Catal. Commun. 89, 86 (2017).
http://dx.doi.org/10.1016/j.catcom.2016.10.032
. I. Eswaramoorthi, A. K. Dalai, Int. J. Hydrog. Energy 34, 2580 (2009).
https://doi.org/10.1016/j.ijhydene.2009.01.029
. D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 120, 6024 (1998).
https://doi.org/10.1021/ja974025i
. P. Han, X. Wang, X. Qiu, X. Ji, L. Gao, J. Mol. Catal. A Chem. 272, 136 (2007).
https://doi.org/10.1016/j.molcata.2007.03.006
. G.K. Reddy, T.C. Peck, C.A. Roberts, Catalysts 9, 62 (2019).
https://doi.org/10.3390/catal9010062
. T. Pham Huu, M. Adamowska, P. Da Costa, J.M. Cormier, A. Khacef, Proceeding of the 20th International Conference on gas discharge an aplications, Orleans, France (2014).
https://gd2014.sciencesconf.org/28671/Khacef_VOCs.pdf
. J.G. Pacheco-Sosa, J.C. Chavarria-Hernandez, B. Escobar-Morales, L.C. Ordoñez-López, H. Pérez-Vidal, J.G. Torres-Torres, J.S. Ferráez-Hernández, Superf. y Vacio. 28, 69 (2015).
http://www.scielo.org.mx/pdf/sv/v28n3/1665-3521-sv-28-03-00069.pdf
. M. Mesa, L. Sierra, J.L. Guth, Microporous Mesoporous Mater. 112, 338 (2008).
https://doi.org/10.1016/j.micromeso.2007.10.008
. L. Chen, Y.M. Wang, M.-Y. He, J. Porous Mater. 18, 211 (2011).
https://doi.org/10.1016/j.micromeso.2007.10.008
. J. Liu, C. Li, Q. Yang, J. Yang, C. Li, Langmuir 23, 7255 (2007).
https://doi.org/10.1021/la7003134
. G. Calleja, R. Van Grieken, J.A. Melero, An. R Soc. Esp. Quim. N° 4, 31 (2003).
https://dialnet.unirioja.es/servlet/articulo?codigo=762323
. S.H. Gage, J. Engelhardt, M.J. Menart, C. Ngo, G.J. Leong, Y. Ji, B.G. Trewyn, S. Pylypenko, R.M. Richards, ACS Omega 3, 7681 (2018).
https://doi.org/10.1021/acsomega.8b00951
. I. Yuranov, P. Moeckli, E. Suvorova, P. Buffat, L. Kiwi-Minsker, A. Renken, J. Mol. Catal. A Chem. 192, 239 (2003).
https://doi.org/10.1016/S1381-1169(02)00441-7
. E.M. Slavinskaya, T.Y. Kardash, O.A. Stonkus, R.V. Gulyaev, I.N. Lapin,V.A. Svetlichnyi, A.I. Boronin, Catal. Sci. Technol. 6, 6650 (2016).
https://pubs.rsc.org/en/content/articlehtml/2016/cy/c6cy00319b
. Y. Duan, M. Zheng, D. Li, D. Deng, C. Wu, Y. Yang, RSC Adv. 7, 3443 (2017).
http://dx.doi.org/10.1039/C6RA26811K
. D. Bhuyan, K. Selvaraj, L. Saikia, Microporous Mesoporous Mater. 241, 266 (2017).
https://doi.org/10.1016/j.micromeso.2016.12.025
. A.H. Braga, M.C. Ribeiro, F.B. Noronha, D. Galante, J.M. Bueno, J.B. Santos, Energy Fuels 32, 12814 (2018).
https://doi.org/10.1021/acs.energyfuels.8b02727
. K. Lal, A. Garg, Clean Technol. Environ. Policy 17, 199 (2015).
https://doi.org/10.1007/s10098-014-0777-9
. R. Ple?a Chicina?, E. Gál, H. Bedelean, M. Darabantu, A. M?ic?neanu, Sep. Purif. Technol. 197, 36 (2018).
https://doi.org/10.1016/j.seppur.2017.12.050
. S. Zhou, Z. Qian, T. Sun, J. Xu, C. Xia, Appl. Clay Sci. 53, 627 (2011).
http://dx.doi.org/10.1016/j.clay.2011.05.013
. A. Eftaxias, J. Font, A. Fortuny, A. Fabregat, F. Stüber, Appl. Catal. B Environ. 67, 12 (2006).
https://doi.org/10.1016/j.apcatb.2006.04.012
. J. Wang, W. Fu, X. He, S. Yang, W. Zhu, J. Environ. Sci. 26, 1741 (2014).
https://doi.org/10.1016/j.jes.2014.06.015
. W. An, Q. Zhang, Y. Ma, K. T. Chuang, Catal. Today 64, 289 (2001).
https://doi.org/10.1016/S0920-5861(00)00532-0
. S. K. Bhargava, J. Tardio, J. Prasad, K. Föger, D.B. Akolekar, S.C. Grocott, Ind. Eng. Chem. Res. 45, 1221 (2006).
https://doi.org/10.1021/ie051059n
. F. Arena, C. Italiano, A. Raneri, C. Saja, Appl. Catal. B Environ. 99, 321 (2010).
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2022 Array