Importance of liquid phase epitaxy on achieving near-lattice-matched growth of In0.145Ga0.855As0.132Sb0.868 layers on GaSb(100) substrates
Cross-sectional HAADF micrograph of In0.145Ga0.855As0.132Sb0.868 layer grown on GaSb(100) substrate by LPE


InxGa1-xAsySb1-y layers
Liquid Phase Epitaxy
infrared spectral region

How to Cite

González Morales, M. Ángel, Cruz Bueno, J. de J., Villa Martínez, G., Ramírez López, M., Flores Ramírez, D., Rodríguez Fragoso, P., Herrera Pérez, J. L., Casallas Moreno, Y. L., & Mendoza Álvarez, J. (2022). Importance of liquid phase epitaxy on achieving near-lattice-matched growth of In0.145Ga0.855As0.132Sb0.868 layers on GaSb(100) substrates. Superficies Y Vacío, 35, 220601.


We report the growth of In0.145Ga0.855As0.132Sb0.868 layers on GaSb(100) substrates by the liquid phase epitaxy (LPE) technique using the ramp-cooling method. We achieved a near-lattice-matched epitaxial growth with a lattice mismatch of  between the quaternary layer and GaSb(100) substrate due to optimal growth parameters. Aberration-corrected scanning transmission electron microscope (AC-STEM) confirmed the high crystalline quality of the quaternary layer and the low lattice mismatch in the heterostructure, without the presence of linear or planar defects. Also, the Secondary Ion Mass Spectrometry (SIMS) technique evidenced a uniform distribution of the atomic elements along the quaternary layer and an abrupt interface between the In0.145Ga0.855As0.132Sb0.868 layer and the GaSb substrate. Plasmon-phonon interactions were observed by Raman spectroscopy indicating that the crystalline quality increases at greater depth in the sample with respect to the surface. The quaternary layer presented a uniform and flat morphology, and luminescence emission attributed to the recombination of bound exciton states at 641 meV. The structural, chemical, and optical properties of the In0.145Ga0.855As0.132Sb0.868 layer demonstrated that it could be auspicious material for infrared range optoelectronic applications. Likewise, the LPE technique successfully shows that it should be used to grow near-lattice-matched heterostructures.


. A. Krier, Anthony (Ed.) Mid-Infrared Semiconductor Optoelectronics (UK, Springer, 2006).

. W.D. Lawson, S. Nielsen, E.H. Putley, A.S. Young, J. Phys. Chem. Solids 9, 325 (1959).

. A. Rogalski, K. Adamiec, J. Rutkowski, Narrow-Gap Semiconductor Photodiodes (USA, SPIE-press, 2000).

. A. Rogalski, Rep. Prog. Phys. 68, 2267 (2005).

. E. Tournié, L. Cerutti. Mid-Infrared Optoelectronics: Materials, Devices, and Applications (UK, Woodhead Pub., 2019).

. Y.L. Casallas-Moreno, M. Ramírez-López, G. Villa-Martínez, A.L. Martínez-López, M. Macias, A. Cruz-Orea, G. González de la Cruz, S.A. Tomás, P. Rodríguez-Fragoso, J.L. Herrera-Pérez, J.G. Mendoza-Álvarez, J. Alloys Compd. 861, 157936 (2021).

. Y.L. Casallas-Moreno, G. Villa-Martínez, M. Ramírez-López, P. Rodríguez-Fragoso, M.L. Gómez-Herrera, M. Pérez-González, A. Escobosa-Echavarría, S.A. Tomás, J.L. Herrera-Pérez, J.G. Mendoza-Álvarez, J. Alloys Compd. 808, 151690 (2019). https://doi:10.1016/j.jallcom.2019.151690

. G. Sek, M. Motyka, K. Ryczko, F. Janiak, J. Misiewicz, S. Belahsene, G.Boissier, Y. Rouillard, Jpn. J. Appl. Phys. 49, 031202 (2010).

. K.C. Nunna, S.L. Tan, C. J. Reyner, A.R.J. Marshall, B. Liang, A. Jallipalli, J.P.R. David, D.L. Huffaker, IEEE Photonics Technol. Lett. 24, 218 (2012).

. C.A. Yang, S.W. Xie, Y. Zhang, J.M. Shang, S.S. Huang, Y. Yuan, F.H. Shao, Y. Zhang, Y.Q. Xu, Z.C. Niu, Appl. Phys. Lett. 114, 021102 (2019).

. M.N. Abedin, T.F. Refaat, Y. Xiao, I. Bhat, Proc. SPIE 5883, Infrared Spaceborne Remote Sensing 2005, 588307 (2005).

. F. Bouzid, N. Maamri, J. Fundam. Appl. Sci. 5, 81 (2015).

. L.A. Sokura, Y.A. Parkhomenko, K.D. Moiseev, V.N. Nevedomsky, N.A. Bert, Semiconductors 51, 1101 (2017).

. M.W. Dashiell, J.F. Beausang, H. Ehsani, G.J. Nichols, D.M. Depoy, L.R. Danielson, P. Talamo, K.D. Rahner, E.J. Brown, S.R. Burger, P.M. Fourspring, W.F. Topper, P. F. Baldasaro, C.A. Wang, R.K. Huang, M.K. Connors, G.W. Turner, Z.A. Shellenbarger, G. Taylor, J. Li, R. Martinelli, D. Donetski, S. Anikeev, G.L. Belenky, S. Luryi, IEEE Trans. Electron Dev. 53, 2879 (2006).

. H. Jia, L. Shen, X. Li, Y. Kang, X. Fang, D. Fang, F. Lin, J. Tang, D. Wang, X. Ma, Z. Wei, Opt. Mater. Express 10, 3384 (2020).

. G.B. Stringfellow, J. Phys. Chem. Solids 33, 665 (1972).

. G. Villa-Martínez, D.M. Hurtado-Castañeda, Y.L. Casallas-Moreno, M. Ramírez-López, M.A. González-Morales, M.L. Gómez-Herrera, J.S. Arias-Cerón, V.M. Sánchez Reséndiz, P. Rodríguez-Fragoso, J.L. Herrera-Pérez, J.G. Mendoza-Álvarez. Solid State Sci. 123, 106797 (2022).

. M.G. Astles, Liquid-Phase Epitaxial Growth of III-V Compound Semiconductor Materials and Their Device Applications (USA, CRC-press, 1990).

. P. Capper, S. Irvine, T. Joyce, Epitaxial Crystal Growth: Methods and Materials. In: Springer Handbook of Electronic and Photonic Materials, Eds. S. Kasap, P. Capper (Springer, Cham, 2017).

. U.W. Pohl, Epitaxy of Semiconductors (Berlin, Springer, 2013).

. C.J.K. Richardson, L.L. Minjoo, MRS Bull. 41, 193 (2013).

. J.M. Díaz-Reyes, M. Galván-Arellano, J.G. Mendoza-Alvarez, J.S. Arias-Cerón, J.L. Herrera-Pérez, E. López-Cruz, Rev. Mex. Fis. 63, 55 (2017).

. Y.K. Su, K.J. Gan, J.S. Hwang, S.L. Tyan, J. Appl. Phys. 68, 5584 (1998).


. V. Swaminathan, A.T. Macrander, Materials Aspects of GaAs and InP Based Structures (USA, Prentice Hall, 1991).

. M.L. Gomez-Herrera, J.L. Herrera-Perez, P. Rodriguez-Fragoso, I. Riech, J. G. Mendoza-Alvarez. Appl. Surf. Sci. 255, 761 (2008).


. S. Iyer, S. Hegde, A. Abul-Fadl, K.K. Bajaj, W. Mitchel, Phys. Rev. B 48, 8521 (1993).


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Array