Influence of Te layer on CdTe thin films and their performance on CdS/CdTe solar cells
(a) Schematic CdTe and CdTe/Te devices and (b) J-V measurements for all photovoltaic devices
PDF

Keywords

Te
CdS/CdTe junction
Solar cells
photovoltaic efficiency
p region Te
unión CdS/CdTe
Celdas Solares
Eficiencia fotovoltaica
Región p

How to Cite

Hernandez-Vasquez, C., Gonzalez-Trujillo, M. Ángel, Esquivel Méndez, L. A., Aguilar-Hernandez, J. R., & Albor-Aguilera, M. de L. . (2021). Influence of Te layer on CdTe thin films and their performance on CdS/CdTe solar cells. Superficies Y Vacío, 34. https://doi.org/10.47566/2021_syv34_1-210901

Abstract

CdTe semiconductor is an absorbent material used in “tandem” photovoltaic solar cells. This material is commonly deposited by thermal evaporation presenting electrical resistivity values about of 105 W·cm to 109 W·cm. CdTe is applied in thin solar cells as p-type layer which is in contact with metal back electrode in solar cells. In the CdTe/metal junction a Schottky barrier exits; and small number of charge carriers have enough energy to get over the barrier and cross to the metal back contact. To solve part of this problem, nanostructured Te thin films were used as intermediate layers between CdTe and metal contact. Te layers whit different physical properties were deposited on CdS/CdTe structure by thermal evaporation employing different growth parameters. The electrical parameters of CdTe solar cells were influenced by p+ Te regions. p+ Te regions used as intermediate layer with large deposition time increases the FF and VOC values from 30% to 60% and 560 mV to 730 mV respectively. Also, the electrical resistivity is reduced from 106 W·cm to 103 W·cm. In this sense, Te region implemented as nanostructure allows to reduce the series resistance from 99 W to 20 W and increases the shunt resistance from 1445 W to 4424 W;  Te region as thin films demonstrated not be adequate.

https://doi.org/10.47566/2021_syv34_1-210901
PDF

References

M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, A.W.Y. Ho-Baillie, Prog. Photovolt.: Res. Appl. 28, 3 (2020). http://doi.org/10.1002/pip.3228

R. Mendoza, J. Sastre, A. del Oso, M. de los A. Hernández, J. Lizardi, G. Casados, G. Santana, IJRDO – J. Appl. Sci. 5, 48 (2019).

https://www.ijrdo.org/index.php/as/article/view/2950

D.I. Kurbatov, V.V. Kosyak, M.M. Kolesnyk, A.S. Opanasyuk, S.N. Danilchenko, Yu.P. Gnatencko, Mater. Chem. Phys. 138, 731 (2013).

http://dx.doi.org/10.1016/j.matchemphys.2012.12.049

A. Bosio, R. Ciprian, A. Lamperti, I. Rago, B.Ressel, G. Rosa, M. Stupar, E. Weschke, Sol. Energy 176, 186 (2018). https://doi.org/10.1016/j.solener.2018.10.035

Y-T Ma, Z-Q Gong, W-H Xu, J. Huang, Trans. Nonferrous Met. Soc. China 16, 693 (2006).

https://doi.org/10.1016/S1003-6326(06)60123-4

T. Gabriel, I.S. Nandhakumar, G.S. Attard, Electrochem. Comm. 4, 610 (2002).

https://doi.org/10.1016/S1388-2481(02)00390-9

T. Siciliano, M. Di Giulio, M. Tepore, E. Filippo, G. Micocci, A.Tepore, Sens. Actuators B Chem. 135, 250 (2008).

https://doi.org/10.1016/j.snb.2008.08.018

X. Li, D.W. Niles, F.S. Hasoon, R.J. Matson, P. Sheldon, J. Vac. Sci. Technol. A 17, 805 (1999).

https://doi.org/10.1116/1.581651

J.M. Flores Marquez, M.L. Albor Aguilera, Y. Matsumoto Kuwabara, M.A. Gonzalez Trujillo, C. Hernandez Vasquez, R. Mendoza Perez, G.S. Contreras Puente, M. Tufiño Velazquez, Thin Solid Films 582, 124 (2015).

https://doi.org/10.1016/j.tsf.2014.10.070

M.L. Albor Aguilera, J.M. Flores Marquez, M.A. Gonzalez Trujillo, C. Hernandez Vasquez, G.S. Contreras Puente, C. Mejia Garcia, G. Rueda Morales, Rev. Mex. Fis. 62, 129, (2016).

http://www.scielo.org.mx/scielo.php?pid=S0035-001X2016000200006&script=sci_arttext&tlng=en

C. Hernandez Vasquez, M.L. Albor Aguilera, M.A. Gonzalez Trujillo, J.M. Flores Marquez, U. Galarza Gutierrez, J.R. Aguilar Hernandez, D. Jimenez Olarte, Rev. Mex. Fis. 63, 469, (2017).

http://www.scielo.org.mx/scielo.php?pid=S0035-001X2017000500469&script=sci_a rttext&tlng=pt

N. Spatalu, J. Hiie, V. Valdna, M. Caraman, N. Maticiuc, V. Mikli, T. Ptlog, M. Krunsks, V. Lughi, Energy Procedia 44, 85 (2014).

http://doi.org/10.1016/j.egypro.2013.12.013

M.L. Albor-Aguilera, M.A. González-Trujillo, A. Cruz Orea, M. Tufiño-Velazquez, Thin Solid Films 517, 2335 (2009).

https://doi.org/10.1016/j.tsf.2008.11.006

U. Galarza-Gutierrez, M.L. Albor-Aguilera, M.A. Gonzalez-Trujillo, C. Hernandez-Vasquez, J.A. Ortega-Cardenas, J.M. Flores Marquez, F. Cruz-Gandarilla, D. Ramirez-Rosales, R. Mendoza-Perez, G. Rueda-Morales, J.R. Aguilar-Hernandez, H. Yee-Madeira, Mater. Res. Express 6, 125510 (2019).

https://doi.org/10.1088/2053-1591/ab5508

O. Madelug, Semiconductors Basic Data, 2nd ed. (Berlin, Springer-Verlag, 1996) p. 186.

https://doi.org/10.1007/978-3-642-97675-9

K. Li, C. Li, G. Chen, S. Ren, W. Gao, L. Wu, J. Zhang, Chalcogenide Lett. 15, 91 (2018).

http://www.chalcogen.ro/91_LiK.pdf

J. Van Gheluwe, J. Versluys, D. Poelman, P. Clauws, Thin Solid Films 480-481, 264 (2005).

http://doi.org/10.1016/j.tsf.2004.11.031

D. Menossi, E. Artegiani, I. Rimmaudo, A. Le Donne, S. Binetti, J.L. Peña, F. Piccinelli, A. Romeo, Conf. Rec. IEEE Photovolt. Spec. Conf. 44th , 1669-1673 (2017).

https://doi.org/10.1109/PVSC.2017.8366758

D.S. Albin, D. Kuciauskas, J. Ma, W.K. Metzger, J.M. Burst, H.R. Moutinho, P.C. Dippo, Appl. Phyis. Lett. 104, 092109 (2014).

https://doi.org/10.1063/1.4867533

S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986).

https://doi.org/10.1063/1.97359

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2021 Array