Amorphous Zr(OH)4 to t-ZrO2 transformed isothermally


Zirconium hydroxide
Tetragonal Zirconia
Isothermal treatment
Raman spectroscopy

How to Cite

Meza Galvez, J., Olea Mejía, O., Hernández López, S., Vigueras Santiago, E., & Camacho López, M. A. (2018). Amorphous Zr(OH)4 to t-ZrO2 transformed isothermally. Superficies Y Vacío, 31(3), 44-47.


With the aim to study the transformation from the commercially amorphous Zr(OH)4 to the t-ZrO2, phase, the starting material was isothermally treated in a calorimeter at 350, 365, 370, 375 and 380 o C. The TGA coupled to the DSC technique was used to determine with high precision both the temperature and time necessary to achieve the amorphous Zr(OH)4 to  t-ZrO2 transformation. The mass loss and heat flow, as a function of time, were monitored to study the dehydroxylation of Zr(OH)4 and the crystallization processes, respectively. Raman spectroscopy was used to obtain evidence of the t-ZrO2 formation. The DSC results show an exothermic peak (typical of amorphous-crystalline transitions) related to the formation of t-ZrO2. Our results indicate that the time necessary to obtain the t-ZrO2 phase shortens when temperature increases.


. X. Zhang, H. Wang, Bo Xu, J. Phys. Chem. B 109, 9678 (2005).

. W.C. Maskell, Solid State Ionics 134, 43 (2000).

. S. Gupta, Dent Implants Dentures 1, 1 (2016)

. C. Piconi, G. Maccauro, Biomaterials 20, 1(1999).

. J.R. Kelly, P. Benetti, Aust. Dent. J. 56, 84 (2011)

. M.I. Gutierrez, E.H. Penilla, L. Leija, A. Vera, J.E. Garay, G. Aguilar, Adv. Healthcare Mater. 6, 1 (2017).

. M. Li, Z. Feng, G. Xiong, P. Ying, Q. Xin, and C. Li, J. Phys. Chem. B 105, 8107 (2001).

. T. Sato, J. Therm. Anal. Calorim. 69, 255 (2002).

. M. Picquart, T. López, R. Gómez, E. Torres, A. Moreno, and J. Garcia, J. Therm. Anal. Calorim. 76, 755 (2004).

. J.M. Hernández-Enríquez, L.A. García-Serrano, R. García-Alamilla, L.A. Cortez-Lajas, A. Cueto-Hernández, Superficies y Vacío 22, 1 (2009).

. P. Zhang, K.L. Choy, Int. J. Eng. Res. Sci. 7, 18 (2015).

. M. Jouanne, J.F. Morhange, M.A. Kanehisa, E. Haro-Poniatowski, G.A. Fuentes, E. Torres, E. Hernández-Tellez, Phys. Rev. B 64, 1 (2001).

. J. Livage, K. Doi, and C. Mazieres, J. Am. Ceram. Soc. 51, 349 (1968).

. V.B. Glushkova, A.N. Lapshin, Glass Phys. Chem. 29, 415 (2003).

. O. Roberts, A.J.G. Lunt, S. Ying, T. Sui, N. Baimpas, I.P. Dolbnya, M. Parkes, D. Dini, S.M. Kreynin, T.K. Neo, A.M. Korsunsky, W.C.E. Proceeding 2, 1173 (2014)

. R.P. Denkewicz, TenHuisen K.S., J.H. Adair, J. Mater. Res. 5, 2698 (1990)

. H. Nishizawa, N. Yamasaki, K. Matsuoka, H. Mitsushio, J. Am. Ceram. Soc. 65, 343 (1982).

. M.D. Baro, N. Clavaguera, S. Suriñach, Mater. Sci. Eng. 97, 333 (1988).

. V.G. Keramidas, W.B. White, J. Am. Ceram. Soc. 57, 22 (1974).

. G. Stefanic, S. Music, S. Popovic, A. Sekulic, J. Mol. Struct. 408/409, 391 (1997).

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2018 Array