Zn dopant effect on growth, morphology, texture and mechanical properties of SnO2 thin films
PDF
LENS

Keywords

Thin Films
Tin Oxide
Texture
Mechanical Property

How to Cite

Paraguay-Delgado, F., Hurtado-Macias, A., & Solis-Canto, O. (2018). Zn dopant effect on growth, morphology, texture and mechanical properties of SnO2 thin films. Superficies Y Vacío, 31(1), 16-25. https://doi.org/10.47566/2018_syv31_1-010016

Abstract

When tin oxide thin film is doped with Zn, it grows textured and improves its mechanical properties. The material was synthesized on alkali-free borosilicate glass substrates by spray pyrolysis technique. The elemental composition was determined by X-ray energy dispersive spectroscopy and X-ray photoelectron spectroscopy. The morphology and microstructure of films were examined by electron microscopy techniques, they shown different shapes of crystalline particles according to the dopant content. From X-ray diffraction patterns processed by Rietveld refinement methodology was determine lattice parameters, crystallite sizes and micro strain; it showed that the textural growth of the films depend on the Zn dopant quantity content. The mechanical property was studied as a function of dopants amount, it enhancement due to the texture direction growth. For optimized Zn doped quantity in the film, local measurement of hardness and elastic modulus increased from 12 to 23 GPa and from 137 to 195 GPa, respectively. According to the Zn content, the materials show good correlation between elastic module values and (200) texture growth direction parallel to the substrate.

https://doi.org/10.47566/2018_syv31_1-010016
PDF
LENS

References

. W.Y. Jim, X. Liu, W.K. Yiu, Y.H. Leung, A.B. Djurišić, W.K. Chan, C.C. Liao, C. Surya, Phys. Status Solidi(b) 252, 553 (2015).

https://doi.org/10.1002/pssb.201451256

. K Chien, T.W. Coyle, J. of Thermal Spray Technol. 16, 886 (2007).

https://doi.org/10.1109/EPTC.2007.4469686

. A. Kar, S. Sain, S. Kundu, A. Bhattacharyya, S. Kumar Pradhan, A. Patra, Chem. Phys. Chem. 16, 1017 (2015).

https://doi.org/10.1002/cphc.201402864

. X. Huang, G. Zhao, M. Liu, F. Li, J. Qiao, S. Zhao, Electroch. Acta 83, 478 (2012).

https://doi.org/10.1016/j.electacta.2012.08.008

. J.Y. Huang, L. Zhong, C.M. Wang, J.P. Sullivan, W. Xu, L.Q. Zhang, H. Fan, Science 330, 1515 (2010).

https://doi.org/10.1126/science.1198591

. P. Li, Y. Lan, Q. Zhang, Z. Zhao, T. Pullerits, K. Zheng, Y. Zhou, J. of Physical Chemistry C 120, 9253 (2016).

https://doi.org/10.1021/acs.jpcc.6b01530

. A. Tirado-Guízar, G.E. Pina-Luis, F. Paraguay-Delgado, MRS Communications 5, 63 (2015).

http://dx.doi.org/10.1557/mrc.2015.11

. Y.L. Zhang, X.M. Tao, M.Q. Tan, J. of Magnetism and Magnetic Mater. 325, 7 (2013).

https://doi.org/10.1016/j.jmmm.2012.08.004

. P. Raghani and B. Ramanujam, J. of Appl. Phys. 115, 17C114-1 (2014).

http://dx.doi.org/10.1063/1.4859995

. N.A. Franco, K.M. Reddy, J. Eixenberger, D.A. Tenne, C.B. Hanna, A. Punnoose, J. Appl. Phys. 117, 17E515 (2015).

http://dx.doi.org/10.1063/1.4918341

. X. Li, Q. Yu, C. Yu, Y. Huang, R. Li, J. Wang, F. Guo, Y. Zhang, S. Gao, L. Zhao, J. Mater. Chem. A 3, 8076 (2015).

https://doi.org/10.1039/C5TA01176K

. Z.G. Song, F. Ji, J. Ma, T. Ning, X. Pei, Y. Tan, Adv. Mater. Res. 771, 79 (2009).

https://doi.org/10.4028/www.scientific.net/AMR.79-82.771

. B. Bhushan, Handb. of micro/nanotribology, 2nd Ed. (CRC Press, Boca Raton, FL, 1999).

https://www.crcpress.com/Handbook-of-MicroNano-Tribology-Second-Edition/Bhushan/p/book/9780849384028

. G.M. Pharr, Mater. Sci. Eng. A 253, 151 (1998).

https://doi.org/10.1016/S0921-5093(98)00724-2

. D. Tabor, Philos. Mag. A 74, 1207 (1996).

http://dx.doi.org/10.1080/01418619608239720

. B. Bhushan, A.V. Kulkarni, W. Bonin, J.T. Wyrobek, Philos. Mag. A 74, 1117 (1996).

http://dx.doi.org/10.1080/01418619608239712

. Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng, H. Liu, J. You, Nature Energy 1, 16177 (2016).

https://doi.org/10.1038/nenergy.2016.177

. X. Li, B. Bhushan, Scripta Materialia 47, 473 (2002).

https://doi.org/10.1016/S1359-6462(02)00181-1

. Q.P. Tran, J.S. Fang, T.S. Chin, Mater. Sci. in Semiconductor Processing 40, 664 (2015).

https://doi.org/10.1016/j.mssp.2015.07.047

. F. Abrinaei, M. T. Hosseinnejad, M. Shirazi, F. Shahgoli, J. of Chemical Res. 40, 436 (2016).

https://doi.org/10.3184/174751916X14656576466887

. J. Jiang, Y. Lu, B Kramm, F. Michel, C.T. Reindl, M.E. Kracht, M. Eickhoff, Physica Status Solidi(b) 253, 1087 (2016).

https://doi.org/10.1002/pssb.201552747

. M. Miki-Yoshida, F. Paraguay-Delgado, W. Estrada-López, E. Andrade, Thin Solid Films 376, 99 (2000).

https://doi.org/10.1016/S0040-6090(00)01408-5

. M. Vasanthi, K. Ravichandran, N.J. Begum, G. Muruganantham, S. Snega, A. Panneerselvam, P. Kavitha, Superlattices and Microstructures 55, 180 (2013).

https://doi.org/10.1016/j.spmi.2012.12.011

. F. Paraguay D, W. Estrada L., D.R. Acosta N., E. Andrade, M. Miki-Yoshida, Thin Solid Films 350, 192 (1999).

https://doi.org/10.1016/S0040-6090(99)00050-4

. F. Paraguay D, M. Miki-Yoshida, J. Morales, J. Solis, W. Estrada L, Thin Solid Films 373, 137 (2000).

https://doi.org/10.1016/S0040-6090(00)01120-2

. G.M. Pharr, Mater. Sci. Eng. A 253: 151 (1998).

https://doi.org/10.1016/S0921-5093(98)00724-2

. R.A. Young, The Rietveld Method, 1st Ed. (Oxford University Press, New York, 1993).

https://doi.org/10.1017/S0885715600019497

. L. Fuentes, Introducción al método Rietveld (Sociedad Mexicana de Cristalografía, México, 2004).

http://blogs.cimav.edu.mx/luis.fuentes/data/files/Curso_Cristalograf%C3%ADa/Fuentes_M%C3%A9todo_Rietveld.pdf

. V. Bilgin, S. Kose, F. Atay, I. Akyuz, Mater. Lett. 58, 3686 (2004).

https://doi.org/10.1016/j.matlet.2004.07.023

. R. Sánchez Zeferino, U. Pal, R. Meléndrez, H.A. Durán-Muñoz, M. Barboza Flores, J. Appl. Phys. 113, 064306 (2013).

http://dx.doi.org/10.1063/1.4790486

. F.C. Vásquez, F. Paraguay-Delgado, J.E. Morales-Mendoza, W. Antúnez-Flores, D. Lardizabal, G Alonso-Nuñez, G. Berhault, Superlattices Microstruct. 90, 274 (2016).

https://doi.org/10.1016/j.spmi.2015.12.014

. I.N. Sneddon, J. of Eng. Sci. 3, 47(1965).

https://doi.org/10.1016/0020-7225(65)90019-4

. M.F. Doerner, D.S. Gardner and W.D. Nix, J. of Mater. Res. 1, 845 (1986).

https://doi.org/10.1557/JMR.1986.0845

. J.B. Pethica and W.C. Oliver, Physical Scr. 19, 61 (1987).

https://doi.org/10.1088/0031-8949/1987/T19A/010

. A. Alao, L. Yin, J. of Mater. Sci. & Technol. 32, (5) 402 (2016).

https://doi.org/10.1016/j.jmst.2016.02.009

. C. Domínguez-Ríos, A. Hurtado-Macias, R. Torres-Sánchez, M. A. Ramo, J. González-Hernández, Eng. Chem. Res. 51(22), 7762 (2012).

https://doi.org/10.1021/ie201760g

. F. Kormos, I. Rotariu, G. Tolnai, M. Pávai, C. Roman, E. Kálmán, J. Optoelectron. Adv. Mater. 9, 2232 (2007).

https://joam.inoe.ro/index.php?option=magazine&op=view&idu=800&catid=15

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2018 Array