Thermal characterization of castor oil as additive in lubricant oil using photothermal techniques
PDF
LENS

Keywords

castor oil
photothermal techniques
thermal characterization
oil additive

How to Cite

Lara-Hernandez, G., Benavides-Parra, J., Cruz-Orea, A., Contreras-Gallegos, E., Hernández-Aguilar, C., & Flores Cuautle, A. J. de J. (2018). Thermal characterization of castor oil as additive in lubricant oil using photothermal techniques. Superficies Y Vacío, 31(1), 6-9. https://doi.org/10.47566/2018_syv31_1-010006

Abstract

Over the last years extensively research has been carried out on full or partial substitution of supplies resources coming from renewable resources on traditionally non-renewable, in the case of the automobile sector there are progresses in bio-combustibles (biofuel) and synthetic oils coming from vegetable sources. There are strong efforts to find oil additives which can improve oils features in automobile industry, by adding vegetables oils to commercial lubricant oils, is expected to improve oil thermal stability.  In the present research, different ratios of castor oil (ricinus comunis)-motor oil blends were obtained and their thermal properties were characterized by using the so-called Back and Front Photopyroelectric (BPPE/FPPE) techniques. Several oil-additives concentrations were measured and thermal diffusivities and effusivities as well as densities are reported, getting full thermal characterization for every concentration.

 

https://doi.org/10.47566/2018_syv31_1-010006
PDF
LENS

References

. A. Balafoutis, S. Fountas, A. Natsis, G. Papadakis, ISRN Renewable Energy 2011, 1 (2011).

http://dx.doi.org/10.5402/2011/531510

. E. Bedi, G.B. Olesen, R. Myles, Biodisel at Alternative fuels for transportation, DIERET (International Network for Sustainable Energy; retrieved on March 2018).

http://www.inforse.org/europe/dieret/altfuels/biodiesel.htm

. Editorial “Vegetable oil as diesel fuel?” J. Am. Oil Chem. Soc. 57, A805 (1980).

http://dx.doi.org/10.1007/bf02687667

. A. Campanella, E. Rustoy, A. Baldessari, M.A. Baltanás, Bioresour. Technol. 101, 245 (2010).

http://dx.doi.org/10.1016/j.biortech.2009.08.035

. A. Adhvaryu, S.Z. Erhan, J.M. Perez, Wear 257, 359 (2004).

http://dx.doi.org/10.1016/j.wear.2004.01.005

. N. Martini, J.S. Schell (Editors), Plant Oils as Fuels: Present State of Science and Future Developments. (Springer Berlin Heidelberg, 2012).

http://dx.doi.org/10.1007/978-3-642-72269-1

. A. Demirbas, Fuel 87, 1743 (2008).

http://dx.doi.org/10.1016/j.fuel.2007.08.007

. H.J. Berchmans, S. Hirata, Bioresour. Technol. 99, 1716 (2008).

http://dx.doi.org/10.1016/j.biortech.2007.03.051

. L. Canoira, R. Alcántara, M. Jesús García-Martínez, J. Carrasco, Biomass Bioenergy 30, 76 (2006).

http://dx.doi.org/10.1016/j.biombioe.2005.07.002

. R.P.S. Bisht, G.A. Sivasankaran, V.K. Bhatia, Wear 161, 193 (1993).

http://dx.doi.org/10.1016/0043-1648(93)90469-3

. F. Naughton, J. Am. Oil Chem. Soc. 51, 65 (1974).

http://dx.doi.org/10.1007/bf00000015

. H. Mutlu, M.A.R. Meier, Eur. J. Lipid. Sci. Technol. 112, 10 (2010).

http://dx.doi.org/10.1002/ejlt.200900138

. D.S. Ogunniyi, Bioresour. Technol. 97, 1086 (2006).

http://dx.doi.org/10.1016/j.biortech.2005.03.028

. M.M. Conceição, R.A. Candeia, F.C. Silva, A.F. Bezerra, V.J. Fernandes Jr, A.G. Souza, Renew. Sust. Energ. Rev. 11, 964 (2007).

http://dx.doi.org/10.1016/j.rser.2005.10.001

. S.M.P. Meneghetti, M.R. Meneghetti, C.R. Wolf, E.C. Silva, G.E.S. Lima, L. de Lira Silva, T.M. Serra, F. Cauduro, L.G. de Oliveira, Energy & Fuels 20, 2262 (2006).

http://dx.doi.org/10.1021/ef060118m

. M.M. Conceição, R.A. Candeia, H.J. Dantas, L.E.B. Soledade, V.J. Fernandes, A.G. Souza, Energy & Fuels 19, 2185 (2005).

http://dx.doi.org/10.1021/ef050016g

. E.E. Gilbert, J. Chem. Educ. 18, 338 (1941).

http://dx.doi.org/10.1021/ed018p338

. J.A. Balderas-Lopez, Rev. Mex. Fis. 49, 353 (2003).

https://rmf.smf.mx/pdf/rmf/49/4/49_4_353.pdf

. J. Caerels, C. Glorieux, J. Thoen, Rev. Sci. Instrum. 69, 2452 (1998).

http://dx.doi.org/10.1063/1.1148973

. M. Chirtoc, G. Mihilescu, Phys. Rev. B 40, 9606 (1989).

https://doi.org/10.1103/PhysRevB.40.9606

. J.A. Balderas-Lopez, A. Mandelis, J.A. Garcia, Rev. Sci. Instrum. 71, 2933 (2000).

http://dx.doi.org/10.1063/1.1150713

. J. Shen, A. Mandelis, Rev. Sci. Instrum. 66, 4999 (1995).

http://dx.doi.org/10.1063/1.1146123

. J.J.A. Flores-Cuautle, A. Cruz-Orea, E. Suaste-Gomez, Ferroelectrics. 386, 36 (2009).

http://dx.doi.org/10.1080/00150190902961264

. K.G. Ramawat (Editor), Desert Plants: Biology and Biotechnology (Springer Berlin Heidelberg, 2009).

http://dx.doi.org/10.1007/978-3-642-02550-1

. L.M. Cervantes-Espinosa, F.L. Castillo-Alvarado, G. Lara-Hernández, A. Cruz-Orea, C. Hernández-Aguilar, A. Domínguez-Pacheco, Int. J. Thermophys. 35, 1940 (2013).

http://dx.doi.org/10.1007/s10765-012-1347-1

. L.M. Cervantes-Espinosa, F.L. Castillo-Alvarado, G. Lara-Hernández, A. Cruz-Orea, J.G. Mendoza-Alvarez, J.P. Valcárcel, A. García-Quiroz, Int. J. Thermophys. 33, 1916 (2012).

http://dx.doi.org/10.1007/s10765-012-1317-7

. Y.S. Touloukian, in: Thermophysical properties of matter. (Springer, 1995).

ISBN: 0306670208; https://books.google.com.mx/books?id=31sqAAAAYAAJ&hl=es&output=html_text&source=gbs_book_other_versions_r&cad=4

. M. Werner, A. Baars, C. Eder, A. Delgado, J. Chem. Educ. 53, 1444 (2008).

http://dx.doi.org/10.1021/je700685q

. J.N. Coupland, D.J. McClements, J. Am. Chem. Soc. 74, 1559 (1997).

http://dx.doi.org/10.1007/s11746-997-0077-1

. M.K. Ustra, J.R.F. Silva, M. Ansolin, M. Balen, K. Cantelli, I.P. Alkimim, M.A. Mazutti, F.A.P. Voll, V.F. Cabral, L. Cardozo-Filho, M.L. Corazza, J.V. Oliveira, J. Chem. Thermodyn. 58, 460 (2013).

http://dx.doi.org/10.1016/j.jct.2012.10.007

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2018 Array