High-temperature dependence of low magnetization Mn5Ge3 phase formation of sputtered thin films
PDF
LENS

Keywords

Mn5Ge3
C-doping
High-temperature growth
Low magnetization
Sputtering

How to Cite

Alvídrez-Lechuga, A., Holguín-Momaca, J. T., Santillán-Rodríguez, C. R., Matutes-Aquino, J. A., & Olive-Méndez, S. F. (2017). High-temperature dependence of low magnetization Mn5Ge3 phase formation of sputtered thin films. Superficies Y Vacío, 30(4), 61-64. https://doi.org/10.47566/2017_syv30_1-040061

Abstract

We report on the high-temperature dependence of the Mn5Ge3 phase formation on Ge(001). High substrate temperatures from 650 to 850 °C lead to the formation of the Mn5Ge3 thin films with a low magnetization of ~250 kAm-1, which is an important characteristic for faster and low energy consumption of the switching of the magnetic orientation of magnetic thin films by spin-transfer torque. The highest temperature conducts to the formation of the Mn5Ge3 phase with only a small amount of Mn5Ge2 hexagonal clusters. Additionally, carbon doping of the Mn5Ge3 sample grown at 750 °C exhibits an enhancement of the Curie temperature from 296 K to 390 K. The growth mechanism corresponds to a Volmer-Weber mode.
https://doi.org/10.47566/2017_syv30_1-040061
PDF
LENS

References

. S. Olive-Méndez, A. Spiesser, L.A. Michez, V. Le Thanh, A. Glachant, J. Derrien, T. Devillers, A. Barski, M. Jamet, Thin Solid Films 517, 191 (2008).

https://doi.org/10.1016/j.tsf.2008.08.090

. Y. Gao, M. S. Lundstrom, D.E. Nikonov, J. Appl. Phys. 109, 07C306 (2011).

https://doi.org/10.1063/1.3536460

. M.T. Dau, V. Le Thanh, T.G. Le, A. Spiesser, M. Petit, L.A. Michez, R. Daineche, Appl. Phys. Lett. 99, 151908 (2011).

https://doi.org/10.1063/1.3651488

. W. Zhu, H.H. Weitering, E.G. Wang, E. Kaxiras, Z. Zhang, Phys. Rev. Lett. 93, 126102 (2004).

https://doi.org/10.1103/PhysRevLett.93.126102

. C. Zeng, S.C. Erwin, L.C. Feldman, A. P. Li, R. Jin, Y. Song, J. R. Thompson, H.H. Weitering, Appl. Phys. Lett. 83, 5002 (2003).

https://doi.org/10.1063/1.1633684

. P. De Padova, J.M. Mariot, L. Favre, I. Berbezier, B. Olivieri, P. Perfetti, C. Quaresima, C. Ottaviani, A. Taleb-Ibrahimi, P. Le Fèvre, F. Bertran, O. Heckmann, M.C. Richter, W. Ndiaye, F. D'Orazio, F. Lucari, C.M. Cacho, K. Hricovini, Surf. Sci. 605, 638 (2011).

https://doi.org/10.1016/j.susc.2011.01.002

. R.T. Lechner, V. Holý, S. Ashlers, D. Bougeard, J. Stangl, A. Trampert, A. Navarro, G. Bauer, Appl. Phys. Lett. 95, 023102 (2009).

https://doi.org/10.1063/1.3159827

. J.J. Zhu, Ch. Park, Materials today 9, 36 (2006).

https://doi.org/10.1016/S1369-7021(06)71693-5

. D. Dang Duc, O. Dorj, V. Le Thanh, H. Soon Cheol, C. Sunglae, J. Appl. Phys. 114, 073906 (2013).

https://doi.org/10.1063/1.4817372

. A. Spiesser, I. Slipukhina, M.T. Dau, E. Arras, V. Le Thanh, L. Michez, P. Pochet, H. Saito, S. Yuasa, M. Jamet,, J. Derrien, Phys. Rev. B 84, 165203 (2011).

https://doi.org/10.1103/PhysRevB.84.165203

. L.A. Michez, A. Spiesser, M. Petit, S.Bertaina, J.F. Jacquot, D. Dufeu, C. Coudreau, M. Jamet, V. Le Thanh, J. Phys.: Condens. Matter. 27, 266001 (2015).

https://doi.org/10.1088/0953-8984/27/26/266001

. L.A. Michez, F. Virot, M. Petit, R. Hayn, L. Notin, O. Fruchart, V. Heresanu, M. Jamet, V. Le Thanh, J. Appl. Phys. 118, 043906 (2015).

https://doi.org/10.1063/1.4927423

. A. Alvidrez-Lechuga, R. López-Antón, J.T. Holguín-Momaca, F. Espinoza-Magaña, S.F. Olive-Méndez, Thin Solid Films 616, 111 (2016).

https://doi.org/10.1016/j.tsf.2016.07.066

. A. Berche, J.C. Tedenac, P. Jund, Intermetallics 47, 23 (2014).

https://doi.org/10.1016/j.intermet.2013.12.009

. M. Gajdzik, C. Sürgers, M.T. Kelemen, H.v. Löhneysen, J. Magn. Magn. Mater. 221, 248 (2000).

https://doi.org/10.1016/S0304-8853(00)00494-7

. A. Spiesser, S.F. Olive-Mendez, M.-T. Dau, L.A. Michez, A. Watanabe, V. Le Thanh, A. Glachant, J. Derrien, A. Barski, M. Jamet, Thin Solid Films 518, S113 (2010).

https://doi.org/10.1016/j.tsf.2009.10.067

. A. Spiesser, V. Le Thanh, S. Bertaina, L.A. Michez, Appl. Phys. Lett. 99, 121904 (2011).

https://doi.org/10.1063/1.3638472

. S. Ahlers, D. Bougeard, H. Riedl, G. Abstreiter, A. Trampert, W. Kipferl, M. Sperl, A. Bergmaier, G. Dollinger, Physica E 32, 422 (2006).

https://doi.org/10.1016/j.physe.2005.12.129

. M. Petit, M.T. Dau, G. Monier, L. Michez, X. Barre, A. Spiesser, V. Le Thanh, A. Glachant, C. Coudreau, L. Bideux, Ch. Robert, Phys. Status Solidi C 9, 1374 (2012).

https://doi.org/10.1002/pssc.201100448

. N. Stojilovic, S.V. Dordevic, Rongwei Hu, C. Petrovic, J. Appl. Phys. 114, 053708 (2013).

https://doi.org/10.1063/1.4817429

. S. Zhou, W. Zhang, A. Shalimov, Y. Wang, Z. Huang, D. Buerger, A. Mücklich, W. Zhang, H. Schmidt, M. Helm, Nanoscale Res. Lett. 7, 528 (2012).

https://doi.org/10.1186/1556-276X-7-528

. H.K. Yuan, H. Chen, A.L. Kuang, C.L. Tian, J.Z. Wang, J. Chem. Phys. 139, 204307 (2013).

http://doi.org/10.1063/1.4832741

. T. Matsui, T. Fukushima, M. Shigematsu, H. Mabuchi, K. Morii, J. Alloys Compd. 236, 113 (1996).

https://doi.org/10.1016/0925-8388(95)02100-0

. M.D. Kuz’min, Phys. Rev. Lett. 94, 107204 (2005).

http://doi.org/10.1103/PhysRevLett.94.107204

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2017 Array