Pechini method synthesis and structural, optical and thermoelectric characterization of CuAlO2
PDF (Español (España))
LENS (Español (España))


Thermal history
Crystaline structure
Seebeck coefficient CuAlO2
Historia térmica
Estructura cristalina
Coeficiente Seebeck

How to Cite

Estrada Moreno, C., Guarneros Aguilar, C., Pacio Castillo, M., & Caballero Briones, F. (2017). Pechini method synthesis and structural, optical and thermoelectric characterization of CuAlO2. Superficies Y Vacío, 30(3), 40-45.


Copper aluminate (CuAlO2) is a p-type semiconducting thermoelectric material that crystalize in delafosite phase at a temperature of 1100 °C. In this work, two samples were synthesized by Pechini method and calcined using two different procedures in order to determine the effect of thermal history on the phase formation and the thermoelectric properties. Sample M1 was calcined at 1100 °C after a termal treatment at 550 °C and the sample M2 was calcined at 1100 °C without previous treatment. Crystalline structure of obtained materials was analyzed by X-ray diffraction and bandgap energy obtained from Kubelka-Munk method applied to UV-Vis diffuse reflectance spectra. In sample M1 a mixture of spinel and delafossite phases was obtained and in sample M2 a mixture of Al2O3 and delafossite. Electrical conductivity, carrier density and Seebeck effect were measured from 100 °C to 800 °C, confirming that both samples are p-type semiconductors and their conductivity occurs from small polarons. It is shown that temperature ramp and pre-treatment affect the formation of secondary phases, which has a direct effect on thermoelectric properties of the material.
PDF (Español (España))
LENS (Español (España))


. A. Shakouri, Ann. Rev. Mater. Res. 41, 399 (2011).

. M.H. Elsheikh, D.A. Shnawah, M.F. Sabri, S.B. Said, M.H. Hassan, M.B. Bashir, M. Mohamad, Renew. Sust. Energ. Rev. 30, 337 (2014).

. X. Zhang, L.D. Zhao, Journal of Materiomics 1, 92 (2015).

. K. Koumoto, H. Koduka, W.S. Seo, J. Mater. Chem. 11, 251 (2001).

. A.N. Banerjee, R. Maity, P.K. Ghosh, K.K. Chattopadhyay, Thin Solid Films 474, 261 (2005).

. K. Park, K.Y. Ko, W.S. Seo, J. Eur. Ceram Soc. 25, 2219 (2005).

. R.H. Jarman, J. Bafia, T. Gebreslasse, B.J. Ingram, J.D. Carter, Mater. Res. Bull. 48, 3916 (2013).

. A. Gaki, R. Chrysafi, G. Kakali, J. Eur. Ceram Soc. 27, 1781 (2007).

. S.K. Misra, C.D. Chaklader, J Am. Ceram Soc. 46, 509 (1963).

. The International Centre for Diffraction Data (ICDD), Cartas cristalográficas 01-075-2356, 00-033-0448 y 01-070-5679.

. B.D. Cullity, Elements of X-ray diffraction, (Notre Dame, Indiana, 1956).

. B.J. Wood, R.G.J. Strens, Mineral. Mag. 43, 509 (1979).

. Diffuse Reflectance–Theory and Applications (2011). Pike technologies.

. R. López, R. Gómez, J. Sol-Gel Sci.Technol. 61, 1 (2012).

. B. Lee, R. Gadow, V. Mitic, in: Proceedings of the IV Advanced Ceramics and Applications Conference (University of Oxford, 2017).

. M. Salavati, F. Davar, M. Farhadi, J Sol-Gel Sci Technol. 51, 48 (2009).

. A.N. Banerjee, S. Kundoo, K.K. Chattopadhyay, Thin Solid Films 440, 5 (2003).

. J. Tate, H.L. Ju, J.C. Moon, A. Zakutayev, A.P. Richard, J. Russell, D.H. McIntyre, Phys. Rev. B 80, 165206 (2009).

. B.J. Ingram, T.O. Mason, R. Asahi, K.T. Park, A.J. Freeman, Phys.Rev. B 64, 155114 (2001).

. S.I. Yanagiya, N.V. Nong, J. Xu, N. Pryds, Materials 3, 318 (2010).

. H. Arabshahi. Int. J. Sci. Adv. Technol. 1, 6 (2011).

. D.K. Schroder, Semiconductor material and device characterization, 3rd ed. (Hoboken New Jersey 2006).

ISBN: 978-0-471-73906-7

. H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, Nature 389, 939 (1997).

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2017 Array