Surface micromachining of a micro electromechanical inertial transducer based on commercially available Floating Gate Transistor technology
PDF (English)
LENS (English)

Cómo citar

Abarca-Jiménez, G. S., Romero-Paredes Rubio, G., Reyes-Barranca, M. A., Alemán-Arce, M. Ángel, Munguía-Cervantes, J. E., & Mendoza-Acevedo, S. (2018). Surface micromachining of a micro electromechanical inertial transducer based on commercially available Floating Gate Transistor technology. Superficies Y Vacío, 31(3), 48-51. https://doi.org/10.47566/2018_syv31_1-030048

Resumen

This work presents the results of different surface micromachining processes done on a chip from On Semiconductor 0.5 µm commercially available CMOS technology. The intended objective is to fabricate a MEMS inertial transducer in a monolithic substrate, as the electronics for signal processing are based on a Floating Gate MOS transistor, fully integrated in the electromechanical structure. According to the available layers and design rules from the foundry, an inertial sensor chip was designed and fabricated, except the last post–processing step, i.e., the removal of the sacrificial layer and thus releasing the inertial structure based on a surface micromachining process, allowing the completed device to behave as designed.
https://doi.org/10.47566/2018_syv31_1-030048
PDF (English)
LENS (English)

Citas

. Z. Mohammed, G. Dushaq, A. Chatterjee, M. Rasras. IEEE 17th EuroSimE, 43 (2016).

https://doi.org/10.1109/EuroSimE.2016.7463335

. R.H. Han, J.Y. Wang, M.H. Xu, H. Guo, IEEE, SPAWDA 15 (2016).

https://doi.org/10.1109/SPAWDA.2016.7829958

. Y. Xu, L. Zhao, Z. Jiang, J. Ding, N. Peng, Y. Zhao, Sensors-Basel. 16, 210 (2016).

https://doi.org/10.3390/s16020210

. Z. Xudong, P. Thiruvenkatanathan, A.A. Seshia, J Microelectromech S. 23, 768 (2014).

https://doi.org/10.1109/JMEMS.2014.2319196

. O. Brand, in: CMOS-MEMS, Eds. H. Baltes, O. Brand, G.K. Fedder, C. Hierold, J.K. Korvink, O. Tabata (WILEY-VCH, 2005) pp. 1-67.

https://doi.org/10.1002/9783527616718

. M. Haris, Q. Hongwei, IEEE, NEMS 42 (2010).

https://doi.org/10.1109/NEMS.2010.5592224

. G.S. Abarca-Jiménez, M.A. Reyes-Barranca, S. Mendoza-Acevedo, J.E. Munguía-Cervantes, M.A. Alemán-Arce, Microsyst Technol. 22, 767 (2016).

https://doi.org/10.1007/s00542-015-2429-3

. G.S. Abarca Jiménez, M.A. Reyes Barranca, S. Mendoza Acevedo, J.E. Munguía Cervantes, M.A. Alemán Arce, Microsyst Technol. 21, 1353 (2015).

https://doi.org/10.1007/s00542-014-2274-9

. G.K. Fedder, IEEE, SENSORS. 37 (2005).

https://doi.org/10.1109/ICSENS.2005.1597652

. M.J. Madou, in: Manufacturing Techniques for Microfabrication and Nanotechnology, 3nd ed. (CRC-Press. 2011)

ISBN: 00209781420055191

https://www.crcpress.com/Manufacturing-Techniques-for-Microfabrication-and-Nanotechnology/Madou/p/book/9781420055191

. K.R. Williams, K. Gupta, M. Wasilik, J Microelectromech S. 12, 761 (2003).

https://doi.org/10.1109/jmems.2003.820936

. K.R. Williams, R. S. Muller, J Microelectromech S. 5, 256 (1996).

https://doi.org/10.1109/84.546406

. S. Wolf, R.N. Tauber, in: Silicon Processing for the VLSI Era: Process Technology, 2nd Ed. (Lattice. Press, 2000).

ISBN: 978-0-961-67216-4

https://openlibrary.org/works/OL14992745W/Silicon_Processing_for_the_VLSI_Era_Vol._1

. N.H. Ghazali, H. Soetedjo, N.A. Ngah, A. Yusof, A. Dolah, M.R. Yahya. IEEE International Conference on Semiconductor Electronics. 160 (2008).

https://doi.org/10.1109/SMELEC.2008.4770409

. S.A. Guerrera, A.I. Akinwande, Nanotechnology. 27, 295 (2016).

https://doi.org/10.1088/0957-4484/27/29/295302

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2018 Array