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Relationship analysis of surface roughness measurements on coatings using AFM and 

fractal dimension by mesoscopic model methods 
 

 
A. González-Hernández, E. J. Suárez-Domínguez, Elena F. Izquierdo Kulich, A.B. Morales-Cepeda 

 
Surface coating is a method used for protection against corrosion and environmental impact for metals. In the case of solid 

surfaces, coatings can be achieved by radio-frequency magnetron sputtering or other corrosion-resistant substances, which 

may involve the deposition of one or more layers, depending on the procedure involved, modifying the morphology of the 

surface and surface area. This work aims to study the relationship of two surface morphological methods through roughness 

and fractal dimension measurements in top-surface coatings, bilayer Ti/WTiN/WTiC (named as n = 1); multilayer 

[Ti/WTiN/WTiC] (named as n = 40) deposited by RF-magnetron sputtering. The measurements were obtained by 

profilometer and image processing pixel intensity. The topography of each coating exhibited texture with impurities as 

domes distributed in small cluster island types. The surface roughness were 9.42 and 18.63 nm; fractal dimension 

measurements were 2.55 and 2.32, respectively, with a low correlation between roughness and fractal dimension. The         

R-squared analysis exhibited a good relationship between the fractal dimension values, tending linear regression negative. 

The result of factorial design 22 confirmed the performance correlation and linear regression analyses. The fractal 

dimension measurements by the optical method can be great potential to evaluate surface roughness complementary in 

applications such as laboratories and even in scale industrial. Thus the result of statistical treatment shows high accuracy 

in the measurements. 

 

Introduction 

 

The roughness increase in the material causes the surface 

area to be greater than the corresponding flat surface, whose 

roughness value depends on the measurement technique. 

This difference in values is attributed to applying different 

physical-chemical methods based on the indirect 

measurement of the surface area through observing variables 

in direct or indirect contact whose behavior depends on the 

topography [1]. In coating technologies, the interface 

roughness represents many critical issues, and it directly 

controls various physical and chemical properties in 

deposition processes by Physical Vapor Deposition (PVD) 

methods [2]. The solid surface of crystalline phases presents 

a complex morphology, where the height changes aleatory 

form concerning the spatial position. These height variations 

are shown in the roughness of the surface and cause that 

surface area is more significant than the corresponding flat 

surface equivalent. To describe surface roughness, they use 

geometric information of a surface (x,y,z coordinates) using 

the roughness indices. Depending on how the data was 

explored, they always have a geometrical meaning. Some 

indices employ statistics to describe roughness [3]. As is well 

known, the analysis of the irregularities of the surface used 

fractal geometry [4, 5], where As corresponds to the surface 

area dimensioned from the formula described by Suarez-

Dominguez et al. [6], 

𝐴𝑠 = 𝑘(𝐿𝑓)   (1) 

Where k, is the parameter of the measurement precision; L, 

is the Euclidean length, and f, relating to the fractal 

dimension.  

The surface fractal dimension on the mesoscopic model 

involves taking an image at the microscopic scale and 

plotting the pixel intensity profile to obtain a jagged line, 

which can be determined through the box-counting method 

the total sum of the fractal dimensions of two perpendicular 

lines [6]. In the present manuscript a selection of films were 

grown by radio-frequency (RF) sputtering motivated for 

several reasons. First, the PVD significantly affects the 

crystal morphology that starts from a bare substrate surface 

nucleation, a closed, although polycrystalline film increasing 

roughness, which was expected to influence the fractal 

surface [7]. Instead, many previous works studied the 

influences of different sputtering conditions; e.g., Zhao et al. 

[8] reported that the surface roughness of the films was more 

reliable, dependent on the RF power and gas pressure. Other 

authors, such as Xu et al. [9], studied the influence of 

deposition parameters (argon and nitrogen gas flows) on the 

composition, structures, density, and topography of nitride 

chromium (CrN) coatings deposited by RF-magnetron 

sputtering.  Modeling  the  topography  evolution in terms of 
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fractal parameters might shed some light on the kinetics of 

the growth process, including the early stage of the 

nucleation phenomena and subsequent diffusion of 

contaminants and defects along grain boundaries [10]. 
Literature shows enormous studies of sputter-deposited 

nitride titanium (TiN) coating on the substrate and surface 

analysis; i.e. information on the relationship between 

roughness and fractal dimension surface on a specimen of 

steel out coating using a system of artificial vision with two 

sources of light-emitting diode (LED) light illumination. 

This study correlated the fractal dimension with a contact 

profilometer's surface roughness values [11]. Nowadays, 

surface engineering studies focus on understanding the 

strong relationship between fractal analysis using the 

traditional method and optical-statistical processing 

assistance for modern science and technology [12], even the 

optical-statistical can propose a standardized and excellent 

potential methodology to evaluate surface roughness. This 

method can reduce costs using special equipment, essential 

conditions, and it time-consuming to measure [13], an 

alternative for researchers with limited sources, such as 

Latin-American countries. Our proposal study presents 

coatings based on carbide tungsten-titanium/nitride 

tungsten-titanium from ternary (Ti-W-C) to quaternary     

(Ti-W-C-N) compound systems deposited on the substrate 

according to American Iron and Steel Institute (AISI) 1060 

carbon steel in the bilayer (named as n = 1) and forty-bilayers 

(named as n = 40) published by [14]. Depending on the 

characterization resource method, the increase in period 

deposition affects microstructure surface, promoting 

significative error measurements on roughness performance. 

Thus, this research analyzes the influence of the increased 

deposition time on a surface by comparing roughness and 

fractal dimension measurements obtained by Atomic Force 

Microscopy (AFM) and image processing pixels intensity 

(mesoscopic model). The process was developed on coatings 

sputtered obtained by profilometer topographical analysis, 

Spearman rank correlation, and linear regression statistical 

treatment. To evaluate the interaction of the combination 

between the factors and response variables of roughness 

average (Ra) and fractal dimension (D), at static 2k factorial 

design test was performed as a function of several layers in 

coatings. 

 

Processing and analysis Details  

 

Surface roughness measurements 

The topography analyses of the coatings were carried out 

AFM (Nanosurf, Liestal, Switzerland), in contact mode 

through an Asylum Research equipment model MFP-3D 

(MFP-3D-Stand Alone, Asylum Research, Abingdon-on-

Thames, UK) on a 2-D of 45 µm × 45 µm. The images were 

reviewed using the Gwyddion 2017 version software (Czech 

Metrology Institute, Brno, Czech Republic). The 

measurements were carried out in environmental conditions 

at a room temperature of 25°C. The coatings’ roughness 

analysis was obtained with a Tesa-Rugosurf 90G Surface 

Profilometer (Tesa, Bugnon, Switzerland) using a diamond 

cantilever radius 5 μm, a contact load of 0.75 mN. The 

measurement was obtained on 3-D                                              

2000 µm × 1500 µm × 1200 µm, corresponding to one 

bilayer of nitride tungsten-titanium (Ti/TiWN/TiWC) named 

as n = 1, and forty bilayers (Ti/TiWN/TiWC) named as           

n = 40 deposited by RF-magnetron sputtering. The roughness 

profile was analyzed using lengths from 0 to 2000 μm. All 

the measurements were repeated four times for each sample 

in different areas to validate the reproducibility of the data. 

 

Fractal analysis 

The surface fractal dimension is the dependent variable 

determined by five samples’ photographs with a 1000x GL 

digital microscope. ImageJ Software v.1.51J8 processed the 

final images. Each treatment process took one set of X 

photos; a filter was applied to decrease the characteristic 

roughness of the dispersion medium due to the average size 

of pores (in pixels) as an independent variable. The ImageJ 

Software determined the particle analysis function. The 

statistical measurements were carried to all data information 

by Office 365 Microsoft Excel version, using a reliability 

level of 95% and a significance error of 5% to all statistical 

treatments. 

 

Evaluation of the fractal dimension 

The authors [15], described that the model considers that 

due to the intrinsically random nature of the roughness, it is 

impossible to accurately determine the actual area of the 

surface, both experimentally and theoretically, where the 

estimated value depends on the pragmatic magnification 

level and the method selected for measurement. The authors 

define fractal geometry theory from the morphology of 

natural and irregular objects through fractal dimensions. The 

surface mesoscopic model describes the behavior of the 

intensity of the pixels in two directions perpendicular to each 

other through the image processing technique, so it is 

assumed that the power of the pixels is directly proportional 

to the height of the valleys and ridges of the surface. To 

determine the irregular lines in the way is used the fractal 

dimension (f), 

𝑆𝐹 = 𝑘1−𝑓𝑦𝐷𝑦
𝑓𝑦𝑘1−𝑓𝑥𝐷𝑥

𝑓𝑥 (2) 

The fractal area of the surface (S) is estimated concerning 

the fractional differential calculation [15]. However, 

quantifying the specific fractal area (as, f ) is established as a 

quotient between the fractal and the area equivalent to the 

Euclidean surface. Thus, in summary, the specific fractal (SF) 
is related to the increases in surface area due to the presence 

of roughness for an area equivalent to a flat surface, such that 

the relation promotes the estimation of the fractal area [15]. 

 

Spearman Rank Correlation 

The Spearman´s rank coefficient (Rs) computes the 

responses of each of the two variables rather than their actual 

responses. Both nominal and ordinal data are ranked using 

the Spearman rank coefficient and are not restricted to either 

continuous/discrete variables. The ranges of the Spearman 

rank coefficient vary from - 1 (strong relationship negative) 

http://creativecommons.org/licenses/by/4.0/
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to + 1 (strong relationship positive) and Rs = 0 (zero), 

representing the absence of association between variables 

studied. As well know, the levels corresponding when           

Rs = + 1 means a strong positive correlation; Rs = 0.5 

indicates positive leaks; Rs = 0 does not exist correlation;      

Rs = - 0.5 represents a poor negative correlation; Rs = - 1 

involves a perfect negative correlation between two 

dependent or independent variables [16]. The Spearman rank 

correlation is calculated according to [17]: 

𝑅𝑠 = 1 −
6∑ 𝐷𝑖

2𝑛
𝑖=1

𝑛(𝑛2 − 1)
 (3) 

Where n is the number of rank pairs and Di is the difference 

between a ranked pair; Di = RXi - RYi represents the difference 

in ranks for each observation. 

 

Coefficient of Determination (R2) 

R-squared (R2) measures that part is explained in a certain 

variant as part of a variation, which can be predicted through 

the variation of the other. When the R2 value is higher, the 

data describes the model better. Thus, the data consists of 

values y1, y2, y3,… yn  means a response variable and a model 

with predictor variable is applied to the data, R2 is 

determined following the eq. 4 [18]. 

𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̄�𝑖)
2𝑛

𝑖=1

 (4) 

Where R2 quantifies the variable considered random 

through its measurement;  �̅� determines the average in all 

observations, and is predicted using a fitted model. In the 

case of the null relationship, the predictor and response 

variables, y is the best “model” to explain the data. 

Therefore, the current conditions yi current account for 

deviations in catastrophic situations: there is no existing 

relationship between them. The values of R2 depend on the 

type selection model to fit; in standard cases like linear least-

square regression model corresponding between 0 and 1. A 

lower value of R2 (<0.5) indicates that the regression model 

is not perfect due to terms missing or the existence of 

substantial error variation due to a significant measurement 

put out [18]. 

 

Linear regression analysis 

Given a data set that includes observations of the 

explanatory variables (x), and the response variable (y), the 

linear regression model calculates the relationship between 

the study variables considering the sample size. To fit a 

straight line to the scattered points on the scatterplot, simple 

linear regression is used, and the equation of the line is used 

to generate the predictions. The equation that determines the 

linear regression modeling is described in the following form 

according to [19]:  

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝑒𝑖 (5) 

Where 𝑦𝑖 is linear equation regression; 𝛽0 is the intercept, 

also called the continuous or constant; 𝛽1 is the slope of the 

line; this is how much the value of xi increases for a one-unit  

increase in yi; 𝑒𝑖 is the error in the model. 

 

Factorial design 2k  

Factorial designs are essential in research, especially in the 

early stages of the process and/or product design 

development. These stages are limited when several factors 

are studied; otherwise, the number can extensively 

experiment. The study has two minimum levels to 

investigate the influence interactions by each factor. 

Consequently, various factors with two levels each will 

reduce the number of experiments. A factorial design with 

two groups is called as 2k factorial design, which corresponds 

to a particular case of a multifactorial experiment. The main 

feature of 2k factorial design is that it provides fewer 

treatment combinations in an investigation through a 

randomized block design. This design is used in more 

specific experiments considering two or more factors. When 

they involve a few factors, there may be no interaction 

between the treatment and the blocks. However, as factors 

increase, the possibility of the influence on the performance 

of the process or product is more outstanding. The 2k 

factorial design encourages the experimenter to identify the 

significant factors that interact with each other. 

Subsequently, it is possible to study a complete factorial 

experiment with two or more levels with these important 

factors to determine the optimal levels for an issue, 

according to [20]. Since there are only two levels for each 

study variable, the response is assumed to be approximately 

linear above the element ranks. The factor levels may be 

quantitative or qualitative, e.g., quantitative variables are 

defined by two or more levels as temperature, pressure, time, 

etc. However, two operators define the qualitative variable: 

equipment from high or low factor levels. 

In general terms, the following assumptions in 2k factorial 

design are described as: 

• The factors are invariable. 

• Designs are completely randomized. 

• The normality in the set data is maintained. 

 

The two levels for each treatment or factor are usually low 

or high. In the two-level 2k factorial design, the average 

influence of one factor is defined as the change in the 

response of the variable (y) produced due to a change in the 

level of that factor averaged over the other factor (x), (see 

from Eqs. 6 to 11): 

 

Factor principal influence A: 

Influence of A at the high level of factor 𝐵 = [𝑎 − (1)] 𝑛⁄ , 

the average effect of a factor in A are resumed as (eq. 6): 

𝐴 =
1

2𝑛
[𝑎𝑏 + 𝑎 − 𝑏 − (1)] (6) 

Factor principal influence B: 

Influence of B at the high level of factor 𝐴 = [𝑏 − (1)] 𝑛⁄ , 

the average influence of a factor in B are resumed in eq. 7: 

𝐵 =
1

2𝑛
[𝑎𝑏 + 𝑏 − 𝑎 − (1)] (7) 

http://creativecommons.org/licenses/by/4.0/
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Factor interaction influences A and B: 

The interaction influences of A and B, is (eq. 8): 

𝐴𝐵 =
1

2𝑛
[𝑎𝑏 + (1) − 𝑎 − 𝑏] (8) 

Sum of squares (eqs. 9 to 11): 

𝑆𝑆𝐴 =
[𝑎𝑏 + 𝑎 − 𝑏 − (1)]

4𝑛

2

 (9) 

𝑆𝑆𝐵 =
[𝑎𝑏 + 𝑏 − 𝑎 − (1)]

4𝑛

2

 (10) 

𝑆𝐴𝐵 =
[𝑎𝑏 + (1) − 𝑎 − 𝑏]2

4𝑛
 (11) 

 

Results and discussion 

 

Roughness analysis 

Figure 1(a-f) shows the roughness and topography of n=1 

and n=40 in coatings obtained by RF-magnetron sputtering. 

Figure 1a shows the roughness profile of n=1, measuring a 

coating thickness of 2.06 ± 0.06 μm. Figure 1c shows the 

topography in the 3-D coating and observes parallel lines 

reaching an altitude up to 1.2 μm, probably attributed to 

substrate preparation in previous trough paper sand. Figure 

1e observes the presence of crest (or domes) distributed as a 

small cluster, as like-wise, it observes some imperfections 

due to the contribution of carbon steel substrate roughness. 

The topography observed natural texture, exhibiting certain 

homogeneity of grains with equal dimensions. The Ra 

measurements by AFM analysis expressed in the mean 

nanometer of coating roughness is 18.63 ± 0.01 nm. 

Conversely, Figure 1b shows the roughness profile of n=40, 

measuring a coating thickness of 3.29 ± 0.12 μm. Figure 1d 

shows the topography is notable the uniform smooth texture 

with null ridges or large grains, presenting a decrease in the 

roughness of 9.42 ± 2.89 nm in the n=40 system, similar to 

[21]. Figure 1f observes the presence of crest (or domes) 

distributed as a small cluster, as like-wise, it observes some 

imperfections due to the contribution of rough substrate 

(carbon steel); this characteristic is also shown in Figure 1e. 

The roughness reduction is due to the grain refinement of the 

multilayer coating, attributed to the low deposition periods 

[22]. Authors [23], mention that the grains refinement is due 

to the ion bombardment that stimulates the bilayers, many 

nucleation sites during growth are formed, promoting the 

reduction in the individual thickness of each layer and the 

number of bilayers increases, implying a decrease in surface  

roughness. The orange skin texture surface is probably due 

to the formation of dense coatings without pores and 

morphological cauliflower-like inclusions, typical in 

sputtering processes and randomly distributed [24]. 

The particles dispersed on surface coating are due to a high 

rate plasma sputtering process producing particles disclosed. 

The process causes at least a part of the sputtered target 

atoms' ionization. It is performed at such a parameter that the 

pick-up probability of ionized sputtering target atoms on the 

surface of grains is high [25]. The size grain decreases when 

the number of layers increases, and the texture is softer and 

smoother [26]. 

 

Fractal dimension analysis 

Images with from 50x to 1000x magnification of the solid 

surfaces were treated using two different coatings growths 

obtained using a rf magnetron sputtering technician. Figure 

2a shows the substrate without treatment, presenting surface 
 

 

Figure 1. Images of topography and roughness in n=1 and n=40 coatings deposited by RF-magnetron sputtering; (a,b) Roughness profile by profilometer; 

(c,d) Plotting in 3-D images obtained by profilometer; (e,f) Plotting in 2-D images obtained by AFM 

(

(a)

(b)

(c)

(d)

(e)

(f)

(

(a)

(b)

(c)

(d)

(e)

(f)

a) 

b) 

c) d) 

e) 

f) 
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Figure 2. Images of the process of fractal dimension in a substrate or 

without treatment; (a) Image of the substrate without treatment captured in 

GL digital microscope at 1000x (58.9x magnification); (b) 2D plotting 

through image processed using ImageJ Software for surface reconstruction. 

 

lines due to the preparation of the substrate without the 

polishing process. Figure 2b shows the image reconstruction 

to obtain a fractal dimension by profile analysis, calculating 

(D) 2.42. 

Figure 3 shows the fractal value's dimension on an n=1 

coating. In Figure 3a, the bilayer has a rough surface texture. 

This structure is the one that allows us to recognize the 

formal surface differences that are related to the fractal 

dimension values, also presented in Figure 3b. The image 

reconstruction is shown to obtain a fractal value D= 2.55 ± 

0.128. This structure is the one that allows us to recognize 

the formal surface differences that are related to the fractal 

dimension values, also presented in Figure 3b. The image 

reconstruction is shown to obtain a fractal value D= 2.55 ± 

0.128. 

Figure 4 shows the surface and roughness profile in 2-D 

and 3-D for the n=40 coating. Figure 4a observes the 

reduction of surface imperfections, smooth texture, and some 

parallel lines attributed to the preparation of the substrate, as 

shown in the AFM image. In Figure 4b, the 2-D image 

indicates the sections with imperfections by cut analysis. 

From the picture, the reconstruction obtains a fractal value 

D= 2.32 ± 0.116. 

 

Correlation coefficient of Spearman Rank 

The state of the null hypotheses to evaluate if exists a 

difference between means dimension fractal and 

profilometry in n = 1 and n = 40  coatings  deposited  by  RF- 

 
 

Figure 3. Images of the fractal dimension process in the substrate or with 

TiWN / TiWC bilayer coating; a) Image captured to GL 1000x digital 

microscope (59.8x magnification) ;  b) Plotting in 2D obtained using ImageJ 

Software. 

 

 
Figure 4. Images of the fractal dimension process in the substrate or with 

forty-bilayers coating; a) Image captured to GL 1000x digital microscope 

(59.8x magnification); b) Plotting in 2-D and (c) 3-D obtained using ImageJ 

Software.

(a)

(b)

(a)

(b)

(a)

(b)
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Table 1. Shows the estimated fractal dimension (D) and surface roughness in n=1 and n=40 coatings, measurements four replicates each by type material. 

 Roughness, Ra (nm)  Fractal dimensión, D  

Type 

material 

Sample (n) Statistical estimation Sample (n) Statistical estimation 

1 2 3 4 Mean 
Standard 

Deviation 

Standard 

Error 
1 2 3 4 Mean 

Standard 

Deviation 

Standard 

Error 

n=1 24 10.4 13.6 26.5 18.63 6.78 3.39 2.59 2.54 2.56 2.52 2.55 0.03 0.01 

n=40 6.76 12.3 7.1 11.5 9.42 2.50 1.25 2.32 2.31 2.33 2.32 2.32 0.01 0.00 

 

magnetron sputtering. Thus, the states nulls hypotheses are: 

• H0: The means of surface measurements obtained by 

profilometry and fractal dimension by the mesoscopic 

model are equal (ρ1= ρ2). 

• H1: The means of surface measurements obtained by 

profilometry and fractal dimension by the mesoscopic 

model are different (ρ1≠ ρ2). 

Table 1 shows the roughness and fractal dimension values 

in n=1 and n=40 coatings, statistical estimation such as 

mean, standard deviation, and standard error. For the case of 

roughness measurements, it observes significant variance 

between the values. The roughness values of coatings are 

substantial according to the microscope used, especially in 

the high-magnification scale [27]. However, the fractal 

dimension values present less standard deviation than the 

measurement precision for a parmagnification image [28]. 

The statistical estimation of standard deviation and error in 

fractal dimension shows a minimum difference from 0.00 to 

0.03, indicating high accuracy in the development method. 

The ranking is assigned from 1 to 8, to Roughness and 

Fractal dimension values, ordering from the smallest to the 

largest in n=1 and n=40 coatings; e.g. the roughness value of 

24.00 nm has the rank 7, while the Fractal dimension for the 

same measurement (2.59) has a rank of 8, and their 

difference (d) is -1 (see Table 2). Table 2 shows rankings for 

… … …it calculates the differences (d) between the ranges 

found from roughness and fractal dimension. The difference 

is elevated to squared (d)2, and the differences are added (Σ). 

Finally, the correlation coefficient of Spearman ranges (Rs) 

is determined while the value is 0.4643, indicating positive 

leak dependence; the magnitudes of the ranks of one variable 

are independent of the magnitudes of the ranks of the second 

variable y [29]. 

From the eq. 8, the correlation coefficient of Spearman 

ranks (Rs) was calculated using an extension number of 

replicates total, n = 8. 

 

Linear regression and determination coefficient  

Figure 5 shows the R-squared (R2) measure of the 

proportion of the variance for a dependent variable explained 

by two independent variables corresponding to fractal 

dimension values and surface roughness in coatings n=1 and 

n=40 obtained by RF-magnetron sputtering. It observes a 

high R-squared for fractal dimension (R² = 0.8116, 

corresponding to 81.16%), indicating that the stock 

performance moves relatively in line with the index with  y 

= ‒ 0.0463x + 2.6446 linear regression. However, the 

roughness presented a low R-squared (R² = 0.2562, 

corresponding to 25.62%), indicating the security does not 

generally follow the index's movements with y = ‒ 1.5195x 

+ 20.858 linear regression [30]. The linear regression 

indicates the moderate independence of variables; however, 

their tendency can generate interaction in the future [31]. 

AFM methods, indicated by R²-square can be great potential 

in combination with statistical and other measurements in 

industry and production laboratories. Structured  surface, 

complex time series, and difficulty describing dividing lines 

are much more common than can be expected [32]. 
 

Table 2. Assignation of ranges to original values. 

Type 

material 

Roughness, 

Ra (nm) 
Rank 

Fractal 

dimension (D) 
Rank 

Difference 

(d) 
(d)2 

n=1 

24.00 7 2.59 8 -1 1 

10.40 3 2.54 6 -3 9 

13.60 6 2.56 7 -1 1 

26.50 8 2.52 5 3 9 

n=40 

6.76 1 2.32 2 -1 1 

12.30 5 2.31 1 4 16 

7.10 2 2.33 4 -2 4 

11.50 4 2.32 2 2 4 

 

 
Figure 5. Plotting of behavior the linear fixed regression on n = 1 and              

n = 40 coatings.  
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Table 3. From data of Table 2 is organized the treatment combination 

(roughness and fractal dimension values) 

Treatment combination Replicate 

A B Treatment 1 2 3 4 

- - (1) 24.00 10.40 13.60 26.50 

+ - A 6.76 12.30 7.10 11.50 

- + B 2.59 2.54 2.56 2.52 

+ + AB 2.32 2.31 2.33 2.32 

 

22 Factorial design Treatment statistical 

Its called 22 because the factorial design is two factors (A 

and B). Statements of hypothesis for process statistical 

considered such variables factor A (two types of material) 

and factor B (two types of method). Thus, the states nulls 

hypotheses are: 

Factor A 

• H0: Exist is a factor principal influence of A on the 

dependent variable 

• H1: Exist is no factor principal influence of A on the 

dependent variable 

Factor B 

• H0: Exist is a factor principal influence of B on the 

dependent variable 

• H1: Exist is no factor principal influence of B on the 

dependent variable 

Interactions 

• H0: Exist a interaction significantly between factors 

• H1: No exist interaction significantly between factors 

 

Considering the previous investigation into the influence of 

performance roughness and the dimension of the fractal 

measurement on coating [11]. The performance roughness is 

factor A, and the two interest levels are n=1 and multilayer. 

The fractal dimension is factor B, with the high level 

denoting n = 1 and the low level meaning multilayer coating. 

The experiment is replicated four times, so there are 16 runs. 

From Table 2, the order in which the runs are made is 

random, so this is a completely randomized experiment 

(Table 5). 
 

Table 4. Data for problem from Table 2 

Treatment Factor influences value Sum of squares 

A ‒ 4.72 89.16 

B ‒ 11.58 536.73 

AB 4.49 80.60 

 

 

Figure 6. Plot of interaction influence on roughness and fractal dimension 

measurements. 

Table 5. Two-way ANOVA analysis. 

Source of variation 

(Type of material) 

Sum of 

squares 

Degrees of 

freedom 

Mean 

square 
F0 Fα,(a-1),(ab)(n-1) 

n=1 (A) 89.16 1 89.16 5.12 4.75 

n=40 (B) 536.73 1 536.73 30.83 4.75 

Interaction AB 80.60 1 80.60 4.63 4.75 

Error 208.89 12 17.41 -  

Total 915.38 15 - -  

α=0.05, R.L.=95% 

Determining the factor and computation of sum squares 

The expression from Eqs. 10 to 16 determines the relation 

and interaction of variables. Table 6 shows the values of the 

influence of A and B corresponding to negative relation; 

however, the interaction between the response variables is 

good relation of 4.49. The sum of squares exhibits a good 

relation between variables. Figure 6 illustrates the typical 

plot of influence. The graph demonstrates that process 

parameter surface morphology and the interaction between 

“roughness and fractal dimension” are statistically 

significant at a 5% significance level [33]. In other words, 

the tendency of lines to predict a possible interaction (AB) is 

similar to the one obtained through linear regression 

analysis, indicating a negative interaction. 

 

Hypothesis test by D. Fischer 

It calculates the F-Fischer statistics (F0) using the analysis 

of variance (ANOVA) statistically by the sum of least 

squares. Table 7 is summarized below. 

To carry the contrast process is considering the decision 

rule to determine the outcome for each of the three 

alternative hypotheses, were mentioned:  

  If F0 < Fα,(k-1),(k-1)(b-1), then, the null hypothesis is 

accepted; otherwise, the alternative is accepted.  

Table 5 shows the Fα (treatment of n = 1 and n = 40) in this 

case. The independent influences are significant differences 

in yield the surface methods, is say, does not exist strong 

relation significative between type material. However, the 

interaction of responses variables has interaction since the 

null hypothesis is accepted considering a reliability level 

(R.L.) of 95% and significance error (α) of 5%, evidenced a 

leak interaction between study factors. This characteristic 

means that the influence does not differ between the factor 

levels. In this case, the two simple influences of a given 

factor are equivalent and thus can be more simply described 

by collapsing then into a single main influence [34]. 

 

Conclusions 

 

With the analysis of composition and number of layers of 

the metallic surface, we carried out an experimental study 

analyzing coating presence affectation to the morphology on 

the microscopic and mesoscopic scales, estimating the 

surface area from the box-counting fractal dimension 

determined from images taken on the mesoscopic scale. To 

the carrier study were used two coating types: 

Ti/WTiN/WTiC (named as n = 1); multilayer 

[Ti/WTiN/WTiC] (named as n = 40). The result showed that 

the topography exhibited few domes distributed as small 
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clusters, each surface coating. The roughness (Ra) and fractal 

dimension (D) measurements ranged from 9.42 to 18.63 and 

2.55 to 2.32, respectively. The relationship between the 

roughness and fractal dimension is shown 0.4643 by 

Spearman ranks (rs). The R2 = 81.16% coefficient indicated 

that the stock performance moves relatively in line with the 

index, which was considered acceptable for the model 

limitations, the experimental errors, and the assumption that 

the fractal dimension itself can be considered a stochastic 

variable value on its spatial position. The linear regression 

indicated moderate variables independence; however, the 

negative tendency will predict possible interaction. This 

behavior is according to the found in factorial design 2k 

analysis, assuming does not exist strong relation significative 

between type material. However, the interaction of responses 

variables has interaction since the null hypothesis is accepted 

considering a reliability level of 95% and significance error 

of 5%. The fractal dimension measurements by the optical 

method can be a great potential to evaluate surface roughness 

complementary in applications such as laboratories even, in 

scale industrial, thus that result of statistical treatment shown 

high accuracy in the measurements. 
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