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1. Introduction

Density Functional Theory (DFT) is nowadays the most 
used method to calculate band structures. It is implemented 
in several codes. One well known is the Wien2k code. It has 
evolved in several versions. A friendly interaction was produced 
already in the 2000 version. Nevertheless, a long standing 
problem of all the codes based on DFT was that the band 
structure of semiconductors, in spite of giving a reasonable 
account of the dispersion of the bands, was systematically 
unable to reproduce the experimental values of the gap, This 
problem could be solved by hand using a trick but this kind of 
solution is not what we expect from an ab initio calculation. The 
removal of this problem in the new version (Wien2k 2011) is 
the subject of the analysis that we present in this work. The 
new ability to reproduce the gap value of semiconducting 
materials, allows confi rming results for semiconductor/metal 
and semiconductor/semiconductor interfaces and to calculate 
new ones. These results are of technological interest and per 
se. For example, the YBCO7/GaAs(001) interface was calculated 
[1] using the previous version of the Wien2k code (2008 version) 
and two atomic planes in the GaAs side of the interface were 
found to be metallic. This result could, nevertheless, be infl uenced 
by the inability of the previous version of the code to properly 
account for the gap of the semiconductor. Since the trick 
mentioned above could not be used in an interface calculation, 
the result remains questionable because of the uncertainties in 
the GaAs side results around the very important gap region. The 
rest of the paper is organized as follows. In the next section 
II, we deal very briefly with Density Functional theory (DFT) 
to point to a detail important to this work. In section III, we 
briefly present a few of our calculated results for the band 
structure of metals to check that the accuracy of the new version 
remains the same also in this case. Section IV is devoted to 
semiconductors. We recalculate the results from references [2] 
and [3] and present new results for some other semiconductors which 

we compare to experiment. In a fi nal section V, we analyze 
the results with the new code and present our conclusions.

2. Density Functional Theory

In solids, ions and electrons constitute a many body interacting 
system described by a Schrödinger equation with too many 
particle coordinates to be numerically treatable nowadays, as 
it is very well known. During the last decade, several codes 
were developed based on DFT and this method became the 
most used, precise and practical way to calculate the band 
structure of solids. The development of practical approxi-
mations to the correlation and interchange potential lead to a 
remarkable degree of accuracy to describe even complicated 
metallic systems. At the basis of DFT is the celebrated 
Hohenberg-Khon theorem which shows that the density of 
the ground state contains all the possible information on a 
system and its knowledge is equivalent to the wave function 
itself. So, the expectation value [4] of any observable can be 
calculated from a unique functional of the ground state density, 
ρ(r), which minimizes the energy functional, E[ρ]. Further, 
Khon and Sham [5] transformed the many-body problem into 
a one-body problem and showed that the density f states 
calculated from the solution of the so-called Khon-Sham 
equations (1) is equal to the one of the real ground state 
density of the many-body system

[ ]( ) ( ) ( ) ( )H xc i i iT V V ϕ ε ϕ+ + =r r r r   (1)

where the density is calculated taking into account the occu-
pied states only. In eq. (1), T is the kinetic energy operator, 
VH is the Hartree potential and Vxc is the exchange and correla-
tion potential which is calculated from the exchange and 
correlation energy functional, Vxc(r)=δExc[ρ]/δρ. To solve 
the Khon-Sham equations (1), an explicit expression for 
Exc[ρ] is needed. The exact expression is unknown since it 
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includes all kind of correlations between all the particles in 
the system. So an approximation is needed. The first and best 
known approximation is the Local Density Approximation, 
LDA [6], which was followed by the Generalized Gradient 
Approximation (GGA) [6] and the meta-GGA [7] among other 
approximations. These potentials reproduce rather well the 
band structure of even complicated metallic systems but fail 
in reproducing the gap in semiconductors. A recent progress 
has been made. Blaha et al. [2] have reported the so-called mB-
JLDA potential which is a modifi cation of the exchange and 
correlation potential of Becker and Johnson (BJ) [8]. The new 
potential reproduces the experimental gaps of semiconductors 
with accuracy of several orders of magnitude better than the 
former existing potentials. The modifi ed mBJLDA potential is

 (2)

where ρσ(r) is the density of states, tσ is the kinetic energy 
density and Vx,σ

BR (r) is the Becke-Roussel potential (BR) [9]. 
The c stands for,

   (3)

α and β are free parameters. Within the Wien2k code [10] 
α = −0.012 and β = 1.023 Bohr1/2.

3. Metal Calculations

We present here our result for Nb, V and Ta, to check 
whether differences arise between the LDA and the new 
mBJLDA potential for the case of metal. This analysis does 
not appear reported in the literature, and are important to 
the calculation of metal/semiconductor interfaces. We 
have calculated these band structures, fi rst, using the LDA 
approximation with the old Wien2k code and then we redid 
the same calculation using the new mBJLDA potential. To 
optimize the lattice parameter in a consistent way it is 
recommended [2] to use LDA (GGA) fi rst and to use further 
the optimized lattice parameter obtained in this way to compute 
the band gap structure with the mBJLDA potential. If we 
follow this method, we fi nd a good agreement between LDA 
and mBJLDA for all the three metals calculated as it can be 
checked from Table I.

Table 1. The lattice parameter, a, in Angstrom; the Fermi energy, EF, in 
Rydbergs; the density of states at EF, N(EF) in states per Rydberg for Nb, 
V and Ta calculated with LDA and with mBJLDA potential. The experi-
mental values were taken from reference [11].

Experiment LDA mBJLDA

Element a a EF N(EF) EF N(EF)

NB 3.30059 3.2487 0.78890 24 0.7785 22.15

V 3.02487 2.9273 0.67200 28.28 0.6734 29.24

Ta 3.30280 3.2500 0.84131 21.20 0.8572 20.78

The Fermi energy values, EF, calculated with the mBJLDA 
potential, for Nb, differs in 0.01 Ry with respect to the LDA 
value, which represent a difference of 1.3%. For V and Ta 
these values are 0.2% and 1.8% respectively. The density of 
states at EF, N(EF), presents difference of 7.7%, 3.4% and 
2.0% for Nb, V and Ta respectively. We omit the plot of the 
band structure and the density of states obtained in the different 
ways mentioned here since the overall agreement is such that 
the details just discussed do not show explicitly enough and 
these band structures are very well known. For Nb we have 
compared our results with references [12–14], V with references 
[14, 15] and for Ta with reference [16]. These results show 
that the mBJLDA potential reproduces well the band structure 
of metals.

4. Semiconductor Calculations

A particular feature of mBJLDA potential is that a corresponding 
exchange and correlation energy term , Exc[ρ], such that the 
mBJLDA potential is obtained in the usual way, namely, Vxc 
= δExc[ρ]/δρ, is not possible. As a consequence, a consistent 
optimization procedure to obtain the lattice parameter, the 
Bulk modulus and its derivative with respect to pressure are 
not actually possible. This is a consequence of the empirical 
character of this potential. For that reason, Tran and Blaha 
have proposed the empirical alternative that prior to a band 
structure calculation with the mBJLDA potential, the lattice 
parameter is found from either a LDA or a GGA optimization 
procedure and the result introduced into the code to perform 
the band structure calculation of the semiconductor system. 
Such a procedure gives rise to quite improved results as compared 
to the previous version of the Wien2k code, as we stated 
before. It is known that the LDA underestimates as a rule, the 
lattice parameters and, on the contrary, GGA overestimates 
them. We have explored the possibility of using the averaged 
value as the lattice parameter, aAvg, where aAvg = (aLDA + aGGA)/2. 
Here aLDA(aGGA) is the lattice parameter obtained from an LDA 
(GGA) optimization procedure. When aAvg is used as input into 
the Wien2k code implemented with the mBJLDA potential, a 
better agreement of the band gap value with experiment is obtained 
as compared to the results with aLDA. So this procedure turns 
out to give better results than the one recommended by Tran 
and Blaha and its extra computational cost is relatively low.

In Table II, we present the gap value obtained from our 
band structure calculations for several semiconductors using 
LDA and the new mBJLDA potential, using as lattice parameters 
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aLDA and aAvg, called mBJLDA(aLDA) and mBJLDA(aAvg) 
respectively, and compare our results with the ones reported 
by Blaha et al. [2], with the ones obtained using the hybridized 
exchange potential of Heyd-Scuseria-Ernzerhof (HSE) reported 
in reference [3] and to the experimental values reported in 
references [2, 3, 17, 18].

It is evident from Table II that the gap values for semiconducting 
systems calculated with LDA turn out to be wrong as it is very 
well known. We can see clearly that the results obtained using 
the mBJLDA potential shows a signifi cant improvement in 
the calculation of the gap with respect to experiment. Now, 
the values calculated with mBJLDA(aAvg) have a signifi cantly 
better agreement with experiment of the gap as compared to 
the one obtained with mBJLDA(aLDA) and with the values 
reported by Blaha. The average absolute error values for each 
procedure were 8.2% for mBJLDA(aAvg), 9.3% for values 
reported by Blaha and 10.8% for mBJLDA(aLDA). The results 
calculated with the HSE (See Table II) present a good agreement 
with experiment too. We conclude that our proposal to use 
the average value, aAvg, for calculating the band gap using 
the mBJLDA potential in the Wien2k code results in better 
agreement with the experimental values. The new mBJLDA 
potential opens the possibility to carry out theoretical studies 
of complex systems containing semiconductor compounds as 
surfaces, superlattices and interfaces. 

5. Conclusions

In this work we performed an analysis of the new progress 
done in the implementation of DFT whose most famous 
shortcome was its impossibility to account for the experimental 
value of the band gap of semiconducting systems. We have 
calculated using the new mBJLDA potential [2], the band 
structure of some semiconductors and got their band gap 
value which we compared to experiment. In this work, we 
found two important facts. First, the mBJLDA potential 
reproduces correctly the band structure of metals, which is 
an important new observation. This result is not reported in 
the literature. Second, that the best result for the band gap 
value is obtained, in general, if the average lattice parameter, 
aAvg, is used (aAvg = (aLDA + aGGA)/2) where aLDA(aGGA) is the 
lattice parameter that results from a LDA(GGA) optimization, 
We have calculated the band gap for all semiconductors 
reported in ref. [2] and ref. [3] and some other and compare 
the results among themselves and with experiment. We found 
that the new mBJLDA potential gives rise to gap values that 
represent an important progress as compare to the old LDA 
potential. This new mBJLDA potential, allows the calculation 
of interfaces and superlattices with a semiconducting compo-
nent with a high degree of accuracy which were diffcult with 
the old code. For example, in the ref. [1] the electronic band 
structure of the interface YBCO7/GaAs was calculated using 

Table 2. The gap is in eV, the crystal structure is indicated in the second column, the data are from Blaha et al. [2], from HSE [3] and the 
experimental ones from references [2, 3, 17, 18]. The absolute percentage error with respect to experiment is shown in parentheses.

This work Blaha et al.

Solid Structure LDA mBJLDA(aLDA) mBJLDA(aAvg) mBJLDA HSE Expt.

Si A1 0.48 (59%) 1.13 (3.4%) 1.17 (0.0%) 1.17 (0.0%) 1.28 1.17

Ge A1 0.00 (100%) 0.91 (23.0%) 0.80 (8.1%) 0.85 (14.9%) 0.56 0.74

MgO B1 4.72 (38%) 7.57 (0.3%) 7.22 (4.4%) 7.17 (5.0%) 6.5 7.55

LiF B1 8.78 (38%) 13.8 (2.8%) 13.4 (5.6%) 12.9 (8.9%) 14.2

AlAs B3 1.35 (39%) 2.13 (4.5%) 2.17 (2.7%) 2.24 2.23

SiC B3 1.31 (45%) 2.21 (7.9%) 2.26 (5.8%) 2.28 (5.0%) 2.39 2.40

BP B3 1.19 (40%) 1.80 (10.0%) 1.83 (8.5%) 2.16 2.00

BAs B3 1.23 (16%) 1.69 (15.8%) 1.72 (17.8%) 1.92 1.46

InP B3 0.45 (69%) 1.70 (18.9%) 1.52 (6.3%) 1.40a (14.7%) 1.64 1.43

A1P B3 1.45 (41%) 2.28 (6.9%) 2.33 (4.9%) 2.32 (5.3%) 2.52 2.45

BN B3 4.78 (23%) 5.86 (5.8%) 5.85 (5.9%) 5.85 (5.9%) 5.98 6.22

GaN B3 1.66 (48%) 3.13 (2.2%) 2.94 (8.1%) 2.81 (12.2%) 3.03 3.20

CdTe B3 0.49 (67%) 1.80 (20.8%) 1.67 (12.1%) 1.52 1.49

GaAS B3 0.30 (80%) 1.84 (21.1%) 1.56 (2.6%) 1.64 (7.9%) 1.21 1.52

ZnS B3 1.85 (53%) 3.63 (7.2%) 3.70 (5.4%) 3.66 (6.4%) 3.42 3.91

CdS B3 0.87 (64%) 2.68 (10.7%) 2.61 (7.9%) 2.66 (9.9%) 2.14 2.42

A1Sb B3 1.14 (32%) 1.76 (4.8%) 1.80 (7.1%) 1.99 1.68

InN B4 0.02 (97%) 0.82 (18.8%) 0.82 (18.8%) 0.71 0.69

A1N B4 4.14 (34%) 5.52 (12.1%) 5.53 (11.9%) 5.11 (11.6%) 6.28

ZnO B4 0.75 (78%) 2.76 (18.5%) 2.76 (19.8%) 2.68 (22.1%) 3.44

Average error 53% 10.8% 8.2% 9.3
a Reference [18]
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Wien2k 2008 code and obtained that two atomic planes in 
the GaAs side become metallic. Nevertheless since the code 
does not allow the correct calculation of the gap of the semi-
conductor, this interesting result remained uncertain [19]. In 
that sense, the new potential opens a new field which is of 
interest in several disciplines as spintronics, semiconductor 
devices, superconductivity or two-dimensional electron gas 
properties, among others.
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